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Abstract— Congestion control is a fundamental building
block in packet switching networks such as the Internet due
to the sharing of communication resources. It has been shown
that the plant dynamics is essentially made of an integrator plus
time delay and that the a proportional controller plus a Smith
predictor is a simple and effective controller. It has been also
shown that the today running TCP congestion control can me
modeled using a Smith predictor plus a proportional controller
[8]. Due to the importance of this control structure in the field of
data network congestion control, we analyze the robust stability
of this controller in the face of delay uncertainties that in data
networks are present due to queuing. In particular, by applying
a simple geometric approach [3], we derive a bound on the
proportional controller gain which is necessary and sufficient
to guarantee stability given a bound on delay uncertainty.

I. INTRODUCTION

Time delays are often present in feedback control sys-
tems due to reasons such as the transport of material or
information. From the control theoretic point of view it is
well-known that an increase of the time delay may lead
to instability of the closed loop system and to performance
degradation as well.

The Smith principle is a classic approach which is often
employed to design controllers for time delay systems [15]. It
is known that, by assuming exact knowledge of both the plant
model and time delay, controllers designed using a Smith
predictor are very effective in counteracting the effect of time
delays. Robustness of the Smith predictor with respect to
uncertainties in the knowledge of the time delay has been
extensively studied since 1980 [13], [17].

The Internet represents a relevant example of time delay
system due to the presence of delays that are caused by the
propagation of the information, which is sent in form of data
packets, from a source to a destination through a series of
communication links and router queues.

A cornerstone component of the Internet protocol stack
is the end-to-end congestion control which has been imple-
mented in the TCP in the late *80s by V. Jacobson in order to
avoid congestion and preserve network stability [6]. Several
fluid models have been proposed for the TCP congestion
control algorithm in order to analytically study the stability
of the network under different scenarios [4], [8] .
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In [8] a simple model of the plant made of an integra-
tor (modelling the bottleneck queue) plus two time delays
(modelling forward and backward delays), has been proposed
along with a Smith predictor plus a proportional controller .
The paper also shows that the Smith predictor controller with
a proportional gain models the congestion control law which
is employed in the today running TCP congestion control
algorithm. Moreover, the model presented in [8] has been
employed to design and implement a rate-based congestion
control algorithm which is TCP friendly [2].

Measurement of the plant time delay to be used in the
Smith predictor can be affected by uncertainties due to the
fact that the time delay is made of a constant propagation
delay plus a time-varying queueing delays. To the purpose,
the standard TCP [14] estimates the Round Trip Time (RTT)
through time-stamping in order to set the retransmission
timeout (RTO) [14] which is needed for detecting heavy
congestion episodes in the network. The RTT is defined
as the time that elapses from when a segment is sent until
the corresponding acknowledgement segment is received by
the sender. In the standard TCP implementation, the RTT is
measured each RT'T seconds, whereas no measurements are
taken on retransmitted segments due to the Karn’s algorithm
[7] in order to avoid spurious timeouts. For these reasons
TCP, in its standard implementation, does not provide an
accurate measure of RTT. In order to overcome this issue
another optional scheme has been proposed and standard-
ized in [5] which makes use of timestamps in an optional
field of the TCP header. However, even if the timestamp
option is employed by both peers of the communication, the
granularity chosen for TCP timestamps is implementation-
dependent. In a recent work an extensive measurement cam-
paign on RTTs as been carried out [16]. Authors used 500
servers and found that 76% of the servers had timestamping
option enabled, and out of these servers 37% used a 100 ms
granularity, 55% a 10 ms granularity and only 7% of them
had a granularity of 1 ms .

A preliminary study on robust stability of a proportional
Smith predictor used for congestion control in data networks
has been carried out by using the Nyquist criterion in [9].
It revealed that in order to guarantee asymptotic stability it
is sufficient that A < 1/k where A represents the delay
uncertainty and k is the gain of the proportional controller.

The goal of this paper is to provide a characterization of
the robust stability of system introduced in [8] by applying
the geometric approach which has been developed in [3].

The rest of the paper is organized as follows: in Section II
we briefly review the model [8] of the closed loop congestion
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Fig. 2. Functional block of the congestion control model

in a general packet switching networks; in Section III we
apply the geometrical approach [11] in order to find the
stability crossing curves of the system; in Section IV we
present the robustness analysis; finally Section V concludes
the paper.

II. CONGESTION CONTROL MODEL

A network connection is basically made by a set of
communication links and store-and-forward nodes (routers)
where packets are enqueued before being routed to the
destination (see Figure 1). Congestion can arise when packets
arrive at a rate which is above the capacity of the output link
so that the router queue builds up until it is full and it starts
to drop packets.

In [8] a model the Internet flow and congestion control as
a time delay system is provided and it is shown that different
variants of TCP congestion control algorithms can be mod-
eled in a unified framework by proper input shaping of the
proportional Smith predictor controller [10]. In particular,
the model consists of a feedback loop in which two time
delays are present as it is shown in Figure 2: T} models the
propagation time of a packet from source to the bottleneck
and 75 models the propagation time from the bottleneck to
the destination and then back to the sender. The round trip
time of the connection is 1" =T} + T5.

The bottleneck queue is modeled by a simple integrator
1/s and the controller is a proportional Smith predictor with
gain K. The reason for using a simple proportional controller
is that in this way the closed-loop dynamics can be made that
of a first-order system with time constant 1/k delayed by 77.
Thus, the step response of the system can be made faster
by increasing the proportional gain k£ providing an always

stable system without oscillations or overshoots. Moreover
this choice provides a controller in which only one design
parameter, i.e. the gain k has to be tuned.

Model mismatch are known to affect the closed loop
dynamics when a Smith predictor controller is employed. In
this case, it is worth noting that the only source of mismatch
between the model and the actual plant is the entity of the
delay (see Section I) whereas the model of the bottleneck
queue is an integrator. In the next sections we will give
simple rules in order to tune the design parameter % in order
to retain asymptotic stability when the measure of time delay
T is uncertain.

Finally we remark that a Smith predictor controller when
designing a congestion control algorithm for data networks
is recommended since using PID controllers would provide
an unacceptable sluggish system due to large delays involved
in communication networks [1].

III. STABILITY CROSSING CURVES IN THE PARAMETERS
SPACE

A. Review of the geometrical approach

We start by briefly reviewing the geometrical approach
which we will employ to analyze the robust stability of the
considered system [11]. The reader is advised to refer to
[3] for a complete description of the method. We denote
with a(s; 71, 72) the characteristic function of the closed-loop
system where 7; represents the nominal delay used in the
Smith predictor and 7, = 7 + A represent the actual plant
delay delay affected by a mismatch A. It is easy to show
that the characteristic function in this case is given by:

a(s;m,m2) =1 —h(s)e”™° + h(s)e” ™° (D

where h(s) is the transfer function of the closed loop system
when no delays are present in the loop:

(S) _ C(S)GO(S)
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with Gy(s) the delay free plant and with C(s) the controller
transfer function.

In order to analyze the stability of the system we look for
the solutions of the characteristic equation:

a(jw;T1,m2) =0 2

In this way we are able to find all the conditions under which
the system has at least one pole on the imaginary axis. The
geometrical approach relies on the observation that the three
terms of the characteristic function (1) can be seen as vectors
in the complex plane. The equality a(s;71,72) = 0 can be
represented in the complex plane via an isosceles triangle as
it is shown in Figure 3. Thus, equation (2) is equivalent to
the following conditions:

1) The triangular inequality must hold for the triangle

shown in Figure 3, which implies that:

1
|h(jw)| > 3 3)

2) Equation (2) must satisfy the phase rule;
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Fig. 3. Triangle formed by the three vectors when the characteristic
equation holds

3) The sum of the internal angles of the isosceles triangle
must be equal to 7;

The solution of (3), which does not depend on time
delays 7 or 7o, forms the frequency crossing set {2 which
is the union of a finite number of intervals of finite length
Q1,99,...,Qn [3]. For any w > 0 which belongs to the
frequency crossing set there exists at least a pair (71, 72)
in the parameters space such that the system has at least
one imaginary pole. The conditions 2 and 3 imply that for
all w € Q all the couples (11,72) € R% which satisfy
a(jw; 1, T2) = 0 can be found using the following equations:

Zh(j 2um £
e _ £h(3w) + 2um g “

w

Zh(j 20—-1
e = £+ 0 =)y .

where v and v are integers such that the corresponding Tf‘i,
Ty *+ are non negative and ¢ represents the internal angle of

the isosceles triangle:

In order to understand the meaning of equations (4) and (5)
let us fix v = w and v = v: if w varies in {); and we evaluate
(4) and (5) for both positive and negative signs we obtain
two curves in the parameter space (71, 72) which we denote
Tﬂ’% and ’Tg% respectively. It is worth noting that the curves
7., = T,,, UT,7 can be either open curves or closed curves
depending on the set €2; we are considering. In particular, if
the left end of €2; is O then the associated curve is an open
curve with both ends approaching co when w — 0. On the
other hand, if the left end of ); is not 0 then Tﬂii is a closed
curve [3].

We define the stability crossing curves T in the 71, 7o
plane as the union of all the curves 7', when i €
{1,...,N}, and u and v vary in the set of integers.

Finally, it is important to point out that when we cross a
stability crossing curve in the 71, 75 plane, two poles cross
the imaginary axis on the complex plane [3].

B. Stability crossing curves of the computer network con-
gestion control model

In order to characterize the impact of the delay uncertainty
on the stability of the considered feedback system we apply
the geometric approach we have reviewed in Section III-
A. We suppose that the system described in Section II is
affected by a delay uncertainty A which is bounded by
d > 0, i.e. |A] < 4. By considering the delay uncertainty,
the characteristic equation of the system can be rewritten as
follows: Eok o .

1+-———-eT*(1—e )=0 (6)
s s
where 7 represents the nominal round trip time (RTT) of the
considered connection, which is used in the Smith predictor,
and 79 = 7 + A is the actual plant time delay.
By multiplying by s/(s + k) both sides of (6) we obtain:
k k

—T18 —(A+7'1)s — O 7
s—i—ke * s+ke )

which is in the form of (1). We are interested in character-
izing the stability of the system when 71, 75 and k vary in
R,.

By making the change of variable z = s/k we obtain:

e"hz 4 e 2z =0 8)

z+1 z+1
where hy = k7; and ho = k7o , which reduces the free
parameters to two. It is worth to notice that the transforma-
tion from (7) to (8) simply involves a scaling of the closed-
loop eigenvalues by 1/k, thus indicating a natural trade-off
between gain and delay since when k increases the closed
loop poles approach to the imaginary axis [12].

We are now ready to study the stability of the original
system in the hi,ho plane regardless the value of the
proportional gain k.

First of all by applying (3) we find that the crossing set is
made by the single interval Q = [0,+/3] which means that
the stability crossing curves in the hi, hy plane are open
curves which extend to infinity when w — 0. By using (4)
and (5) the stability crossing curves of the considered system
result the following:

— arctanw + 2um £ arccos (7”“’2)
ut 2
Bt (W) = y ©)

14+w?
- —arctanw + (2v — 1)7 F arccos (T)
hy™ (w) =

v (10)

Figure 4 shows the stability crossing curves of the consid-
ered system. We start by considering the hq axis (hy = 0),
which means that we are employing a simple proportional
controller without the Smith predictor. By starting from the
origin and increasing the value of hy the first curve is crossed
at ho = 7/2 which means that the system becomes unstable
for hy > /2. On the other hand, the axis hy represents the
system in which no delay affects the plant, but the Smith
predictor is in the controller. Figure 4 shows that the system
is stable for all the delays in the Smith predictor.



Fig. 4. Stability crossing curves for the considered system

Finally, points on the positive bisector represent the case
of perfect matching of nominal delay 7, with the actual delay
T9. Indeed, if we move on this line no curves will be crossed
since the Smith predictor in this case provides a stable system
regardless the value of the proportional gain k.

IV. ROBUST STABILITY ANALYSIS

In this section we will develop an analysis of the robust
stability of the considered system by using the stability
crossing curves we have shown in the previous Section.
We already know that the considered system is always
asymptotically stable for any delay 7; and any proportional
gain k as far as the delay uncertainty is zero thanks to the
perfect compensation of the time delay 7; provided by the
Smith predictor. In the hq, hy plane this condition means that
the system is asymptotically stable on the positive bisector.

In order to characterize the robustness of the system in the
face of delay uncertainties we compute the maximum delay
mismatch which still preserve stability. Thus, the problem
here is to look for the maximum deviation § with respect
to a generic point (74, 77) with 74 > 0 which lies on the
positive bisector such that the system is stable for any (71, 72)
which satisfies:

|70 — 7| < &

We remark that solving the maximum admissible delay un-
certainty problem is equivalent to find the minimum distance
between the stability crossing curves and a generic point on
the positive bisector of the hy, ho plane.

Thus for any 71 > 0 we have to solve:

§(7*) = min min |73F — 17| (11)
uwv prter
so that the maximum delay to retain stability is:
4 = min 6(17) (12)

T*ERL

Proposition 1: A necessary and sufficient condition for
the asymptotic stability of the system regardless the value
of the nominal delay 7 is:

o
A< 2 (13)
where A is the delay uncertainty, « = 1.4775 and k is the
proportional gain of the controller.

Proof: We start by considering the stability crossing
curves in the parameters space hy, ho. In order to find the
minimum distance between the stability crossing curves and
a generic point of positive bisector of the hy, ho plane we
evaluate the tangent to the crossing curves with direction
parallel to the positive bisector:

th dh2 dw dh1 dhg
T e dn T e T MY
To the purpose we look for a subset 7 of the stability
crossing curves 7 that are the “closest” curves to the positive
bisector. By considering a generic curve 7,, ,, and by applying
(9) and (10) it turns out that for all « and v and for all w € ()
it holds h* — YT < Y™ — A}~ so that it is sufficient to
consider only the curves 7,7, in the region hy > h; and
the curves 7, in the region hy < hy, since they will be
the closest ones to the positive bisector. Thus, we can refer
without loss of generality to the generic curve of 7" as 7y, 4+
for all 7 and u in the integers. Straightforward computations
on (9) and (10) give:

+i +i—1
RAtE Y s puticl gy

which means that when ¢ decreases the curves 7y, ,,4; will
move downwards in the hq, ho plane. Figure 5 shows the
values of u and v for the curves 7, ,, and 7,, ;1. It is then
easy to show that if we set v = u we obtain the closest curves
to the positive bisector in the region he < h; whereas the
curves with v = u + 1 are those which are closest to the
positive bisector in the region hs > hy . In conclusion we
can restrict our search to the set :

T=1

u,u

+
U 7;.,qu1

for all w in the integers. Let us consider the region hy > hy

i.e. we consider the subset ’Zju 1 1. By considering (14) after

straightforward computations we get the following equation:

arccos Wil + W ( 1) 0

r —mv—u—=) =
2 Vw? +1v3 — w? 2

15)

with w € Q. By letting v = u + 1 the equation (15) has the
unique solution w = 1.3483 rad/s in {2 which is independent
of u. If we substitute this value in (9) and (10) we obtain:

hy (@) = hy = 4.6601u — 0.2654
hy (@) = hy = 4.6601v — 3.4480

Thus, all the points belonging to the the curves ’]:fu 11 having
a tangent which is parallel to the positive bisector, lie on the
line:

ho = hq + 1.4775 (16)
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For this reason we can conclude that the maximum un-
certainty, in the hq, ho coordinates is 1.4775. The proof is
completed by recalling that h; = k7; and hy = k75 and that
79 = 11 + A. Thus, we finally obtain:

1.4775
k

It is worth to notice that the same procedure can be followed
in the case v = w which leads to the inequality:

hy —hy < 14775 = kA < 14775 = A < a7

1.4775

g (18)

Thus, by considering both (17) and (18) we can conclude
that:

hy —he < 14775 = —kA > 14775 = A > —

1.4775
k

In order to prove the necessity of the condition (19) let us
consider the curves 7, ,+1. The points of the curve 7, ;1
that correspond to the frequency w = 1.3483 rad/s lie on the
line described by (16) so that the maximum delay uncertainty
admissible for those points is exactly a/k. If we select a
larger value for § the system will become unstable at least
on those points. This conclude the proof. [ ]

Remark 1: The fact that the maximum uncertainty al-
lowed does not depend on the nominal delay 7 is a very
nice feature of the Smith predictor based controller. This
makes the controller effective even with large delays.

Remark 2: The condition (13) expresses a trade-off be-
tween the maximum delay mismatch § and the proportional
gain that can be used to tune the controller gain k.

Remark 3: This result improves the robust stability con-
dition |A| < 1/k found in [9].

Proposition 2: The system is stable, regardless the value
of 7y, if the delay uncertainty A satisfies the following

Al < (19)

inequality:

—7'1<A<—7'1+§

3 (20)

with g = 1.1188.
Proof: The proof follows the same arguments of
Proposition 1, therefore it is omitted. |
Remark 4: The condition (20) implicitly requires the de-
lay uncertainty A to be negative, that is, the nominal delay 7;
should be always below the actual delay of the plant 7. For
this reason condition (20) it has no particular meaning for
the characterization of controller robustness, since the sign
of the uncertainty is not known a priori.

V. CONCLUSIONS

In this paper we have analyzed the robust stability of a
very important class of congestion control algorithms when
delay uncertainties are present. We have shown how the
geometrical approach developed in [11] can be easily applied
in order to find stability bounds on the parameter of the
controller. Moreover, we found a very easy to use necessary
and sufficient condition on the gain of the proportional
controller k in order to retain asymptotic stability regardless
the value of the nominal delay 7. Such a result suggests that
congestion control algorithms that employ controllers made
by a Smith predictor plus a proportional gain can be easily
tuned in order to be robust to delay uncertainty.
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