
TCP Westwood: Bandwidth Estimation for Enhanced
Transport over Wireless Links

Saverio Mascolo
Politecnico di Bari

Claudio Casetti

Politecnico di Torino

Mario Gerla, M. Y. Sanadidi, and Ren Wang
UCLA Computer Science Department

Abstract
TCP Westwood (TCPW) is a sender-side modification of the
TCP congestion window algorithm that improves upon the
performance of TCP Reno in wired as well as wireless
networks. The improvement is most significant in wireless
networks with lossy links, since TCP Westwood relies on end-
to-end bandwidth estimation to discriminate the cause of packet
loss (congestion or wireless channel effect) which is a major
problem in TCP Reno. An important distinguishing feature of
TCP Westwood with respect to previous wireless TCP
“extensions” is that it does not require inspection and/or
interception of TCP packets at intermediate (proxy) nodes.
Rather, it fully complies with the end-to-end TCP design
principle. The key innovative idea is to continuously measure at
the TCP source the rate of the connection by monitoring the
rate of returning ACKs. The estimate is then used to compute
congestion window and slow start threshold after a congestion
episode, that is, after three duplicate acknowledgments or after
a timeout. The rationale of this strategy is simple: in contrast
with TCP Reno, which "blindly" halves the congestion window
after three duplicate ACKs, TCP Westwood attempts to select a
slow start threshold and a congestion window which are
consistent with the effective bandwidth used at the time
congestion is experienced. We call this mechanism faster
recovery. The proposed mechanism is particularly effective
over wireless links where sporadic losses due to radio channel
problems are often misinterpreted as a symptom of congestion
by current TCP schemes and thus lead to an unnecessary
window reduction. Experimental studies reveal improvements
in throughput performance, as well as in fairness. In addition,
friendliness with TCP Reno was observed in a set of
experiments showing that TCP Reno connections are not
starved by TCPW connections. Most importantly, TCPW is
extremely effective in mixed wired and wireless networks
where throughput improvements of up to 550% are observed.
Finally, TCPW performs almost as well as localized link layer
approaches such as the popular Snoop scheme, without
incurring the O/H of a specialized link layer protocol.

 This research was supported by NSF under Grant ANI-
9983138 on High Speed Networks Performance Measurements
and Analysis.

1. Introduction
Effective error and congestion control for heterogeneous (wired
and wireless) networks has been an active area of research
recently. End-to-end, Link Layer, and Split Connection
approaches have been suggested and their relative merits
extensively assessed in recent studies [17]. One conclusion
drawn from these studies is that while end-to-end schemes are
not as effective as local recovery techniques in handling
wireless losses, they are promising since significant gains can
be achieved without extensive support at the network layer in
routers and base stations [3]. With these motivations, we
propose in this paper a TCP-based end-to-end (E2E) approach
to error recovery and congestion control in wired/wireless
networks and study its performance.

The well-known challenge in providing TCP congestion control
in mixed environments is that current TCP implementations
rely on packet loss as an indicator of network congestion. In the
wired portion of the network a congested router is indeed the
likely reason of packet loss; on a wireless link, on the other
hand, a noisy, fading radio channel is the more likely cause of
loss. This creates problems in TCP Reno since it does not
possess the capability to distinguish and isolate congestion loss
from wireless loss. As a consequence, TCP Reno reacts to
wireless loss with a drastic reduction of the congestion window,
hence of the sender transmission rate, when the best strategy
would in fact be to increase the retransmission rate.

Approaches to address this problem have been discussed and
compared in the excellent work by Balakrishnan et al. [3]-[5].
Three alternative approaches: E2E, Split Connection, and
Localized Link Layer methods were carefully contrasted. The
best performing approach was shown to be a localized link
layer solution applied directly to the wireless links. A clever
“snooping” protocol is introduced. The protocol appropriately
called “Snoop” monitors the packets flowing over the wireless
link as well as their related acknowledgments. The protocol
entities cache copies of TCP data packets and monitor the
ACKs in the reverse direction. If a packet loss is detected (i.e.,
through duplicate acknowledgments, DUPACKs), the cached
copy is used for local retransmission, and any packet carrying
feedback information back to the TCP sender is extracted so as
to avoid “premature” retransmission at the TCP sender. The
protocol is effective in reducing E2E retransmissions, and,
more importantly, in preventing the associated reduction in
congestion window size.

Snoop, however, has its own limitations. First, it requires a
snoop proxy in the base station. Also, if the TCP sender is the
mobile, the TCP code must be modified to respond to Explicit
Loss Notification (ELN) packets from the base station.
In view of the limitations introduced by link layer solutions, it
is of interest thus to explore E2E recovery solutions that are
independent of the link layer, and thus more versatile.

In this paper we propose to handle wireless losses using a
modified version of TCP Reno. This new version, which we
named TCP Westwood (or TCPW for short), enhances the
window control and backoff process. Namely, a TCPW sender
monitors the acknowledgment reception rate and from it
estimates the data packet rate currently achieved by the
connection. Whenever a sender perceives a packet loss (i.e. a
timeout occurs or 3 duplicate ACKs are received), the sender
uses the bandwidth estimate to properly set the congestion
window (cwin) and the slow start threshold (ssthresh). By
backing off to cwin and ssthresh values that are based on the
estimated available bandwidth (rather than simply halving the
current values as Reno does), TCP Westwood avoids overly
conservative reductions of cwin and ssthresh; and thus it
ensures a faster recovery. Experimental studies reveal the
benefits of the intelligent backoff strategy in TCPW: better
throughput, goodput, and delay performance, as well as fairness
even when competing connections differ in their end-to-end
propagation times. In addition, our studies of TCPW
friendliness when coexisting with TCP Reno is reassuring since
we have observed that TCP Reno connections are not starved in
the presence of TCPW connections. Most importantly, TCPW
is very effective in handling wireless loss. This is because
TCPW uses the current estimated rate as reference for resetting
the congestion window. The current rate is only marginally
impacted by loss (as long as loss is a relatively small fraction of
data rate). The simulation results presented in Section 4 confirm
this claim. For example, a throughput improvement of up to
550% over TCP Reno has been observed.

Other TCP variants that use bandwidth estimation to set the
congestion window have been proposed before. To our
knowledge, however, such schemes require the intervention of
the network layer. For example, the BA-TCP (Bandwidth
Aware-TCP) scheme [10] relies on intermediate routers to take
measurements of available bandwidth and compute the “fair
share” for the TCP connections. The fair share value is
piggybacked in the TCP header and conveyed to the TCP
source. The latter uses it to appropriately set its cwin and
ssthresh parameters. BA-TCP and TCPW are similar in their
reliance on bandwidth information to set congestion control
parameters. However, while BA-TCP requires new network
layer functions to measure available bandwidth and compute
fair share, TCPW relies only on information readily available in
the current TCP header. TCPW does not require any support
from lower layers, and thus strictly adheres to layer separation
and modularity principles.

The TCPW bandwidth estimation and congestion control
algorithms are discussed in Section 2 and 3 below. TCPW
performance behavior in wired and in mixed networks is
studied in Sections 4 and 5. Section 6 concludes the paper.

2. End-to-End Bandwidth Measurement
2.1 The ACK-based measurement procedure
A fundamental design philosophy of the Internet TCP
congestion control algorithm is that it must be performed end-
to-end. The network is considered as a "black box''. A TCP
source cannot receive any explicit congestion feedback from
the network. Therefore the source, to determine the rate at
which it can transmit, must probe the path by progressively
increasing the input load (through the slow start and congestion
avoidance phases) until implicit feedback, such as timeouts or
duplicate acknowledgments, signals that the network capacity
has been reached.

The importance of the end-to-end principle [8] can never be
overemphasized. In fact, it is this principle that guarantees the
delivery of data over any kind of heterogeneous network.

The key idea of TCP Westwood is to exploit TCP
acknowledgment packets to derive rather sophisticated
measurements. We propose that a source perform an end-to-end
estimate of the bandwidth available along a TCP connection by
measuring and averaging the rate of returning ACKs.

After a congestion episode (i.e. the source receives three
duplicate ACKs or a timeout) the source uses the measured
bandwidth to properly set the congestion window and the slow
start threshold, starting a procedure that we will call faster
recovery. When an ACK is received by the source, it conveys
the information that an amount of data corresponding to a
specific transmitted packet was delivered to the destination. If
the transmission process is not affected by losses, simply
averaging the delivered data count over time yields a fair
estimation of the bandwidth currently used by the source.

When duplicate ACKs (DUPACKs), indicating an out-of-
sequence reception, reach the source, they should also count
toward the bandwidth estimate, and a new estimate should be
computed right after their reception.

However, the source is in no position to tell for sure which
segment triggered the DUPACK transmission, and it is thus
unable to update the data count by the size of that segment. An
average of the segment sizes sent thus far in the ongoing
connection should therefore be used, allowing for corrections
when the next cumulative ACK is received. For the sake of
simplicity, we assume all TCP segments to be of the same size.

Following this assumption, we will further assume that
sequence numbers are incremented by one per segment sent,
although the actual TCP implementation keeps track of the
number of bytes instead: the two notations are interchangeable
if all segments have the same size.

It is important to notice that, immediately after a congestion
episode, followed either by a timeout or, in general, n duplicate
ACKs, the bottleneck is at saturation and the connection
delivery rate is equal to the share of the best-effort bandwidth
(i.e., saturation bandwidth) available to that connection. At
steady state, under proper conditions, as stated in Section 3.3,

this actually should be the “fair share”. The saturation condition
is confirmed by the fact that packets have been dropped, an
indication that one or more intermediate buffers are full. Before
a congestion episode, the used bandwidth is less than or equal
to the available bandwidth because the TCP source is still
increasing its window to probe the network capacity.

As a result, TCP Westwood adjusts its input by taking into
account the network capacity that is available to it at the time of
congestion, whereas the current TCP Reno simply halves the
congestion window.

2.2 Filtering the ACK reception rate.
If an ACK is received at the source at time tk, this implies that a
corresponding amount of data dk has been received by the TCP
receiver. Therefore, we can measure the following sample of
bandwidth used by that connection as:

1−−
=

kk

k
k tt

d
b

where tk−1 is the time the previous ACK was received. Since
congestion occurs whenever the low-frequency input traffic rate
exceeds the link capacity [15], we employ a low-pass filter to
average sampled measurements and to obtain the low-
frequency components of the available bandwidth. Notice that
this averaging is also critical to filter out the noise due to
delayed acknowledgments.

The choice of the filter is important. According to our
experience, simple exponential averaging of the kind used by
TCP for RTT estimation is unable to efficiently filter out high-
frequency components of the bandwidth measurements. We
propose the following discrete time filter which is obtained by
discretizing a continuous low-pass filter using the Tustin
approximation [19] We obtain:

12
ˆ

12

12

ˆ

1

1
1

1

1

+
−

τ
+

+
+

−
τ

−
−

τ

=

−

−
−

−

−

kk

kk
k

kk

kk
k

tt

bb
b

tt

tt
b

 (1)

where

kb̂ is the filtered measurement of the available

bandwidth at time ktt = , and 1/τ is the cut-off frequency of the
filter. The structure of filter (1) is simple. To understand how it
works it is useful to consider a constant interarrival time

10/1 τ=∆=− − kkk tt . Then, filter (1) becomes a filter with
constant coefficients

[]11 2
)1(ˆˆ

−− +
−

+= kkkk bb
a

bab (2)

where 9.0=a . The particular form (2) shows that the new
value kb̂ is made by the 90% of the previous value 1

ˆ
−kb plus

the 10% of the arithmetic average of the last two sample bk and
bk−1. Even though the filter (2) is useful to explain how the
average is computed, it cannot be used because in packet-
switched networks the interarrival time is not constant. To
counteract the effect of time-varying interarrival time, the
coefficients of filter (1) depend on 1−− kk tt . The effect of
using time-varying coefficients is easy to understand. When the
interarrival time increases, the last value 1

ˆ
−kb should have less

significance, since it represents an older value, whereas the
significance of recent samples should be higher. This is exactly
what happens with filter (1): the a coefficient decreases when
the interarrival time increases meaning that the previous value

1
ˆ

−kb has less significance with respect to the last two recent
samples which are multiplied by (1−a).

Finally, filter (1) has a cut-off frequency equal to 1/τ. This
means that all frequency components above 1/τ are filtered out.
According to the Nyquist sampling theorem, in order to sample
a signal with bandwidth 1/τ a sampling interval less or equal to
τ/2 is necessary. But, since the ACK stream may be irregular
(for instance, no ACKs are returned when the sender is idle),
the sampling frequency constraint cannot be guaranteed. To
guarantee the Nyquist constraint and thus preserve the low pass
filter effect, we establish that if a time τ/m (m≥2) has elapsed
since the last received ACK without receiving any new ACK,
then the filter assumes the reception of a virtual sample bk=0.

The situation is shown in Fig. 1 below, where 1−kt is the time

an ACK is received,
jkt +ˆ are the arrival times of the virtual

samples, with mtt jkjk /ˆˆ 1 τ=− +++ for j=0,n-1, 0=+ jkb for
j=0,n-1 are the virtual samples and

1−++

+
+ −

=
nknk

nk
nk tt

d
b is the sample computed when the

ACK is received at nkt + .

It is interesting to look at the form that filter (1) takes in the
persistent absence of ACKs from t=tk: that is, in the absence of
ACKs the estimated bandwidth exponentially goes to zero.

12
0ˆ

12
12ˆ 1

1 +
+

+
+
−

= −
− m

b
b

m
m

b k
kk

kk b
m
m

b ˆ
12
12ˆ

1 +
−

=+

…..

1+kb 1−+nkb

1−kt kt̂ 1ˆ +kt 1ˆ −+nkt nkt +
t

1−kb nkb +kb

 Figure.1. Bound on the maximum sampling interval obtained by inserting virtual sample

k

h

hk b
m
m

b ˆ
12
12ˆ 








+
−

=+

In our experiments, m was set to 2.

2.3 On the effects of delayed and cumulative
ACKs on bandwidth measurement
As previously stated, DUPACKs should count toward the
bandwidth estimation, since their arrival indicates a
successfully received segment, albeit in the wrong order. As a
consequence, a cumulative ACK should only count as one
segment's worth of data since duplicate ACKs ought to have
already been taken into account. However, the matter is further
complicated by the issue of delayed ACKs. The standard TCP
implementation provides for an ACK being sent back once
every other in-sequence segment received, or if a 200-ms
timeout expires after the reception of a single segment [18].
The combination of delayed and cumulative ACKs can
potentially disrupt the bandwidth estimation process.

We therefore stress two important aspects of the bandwidth
estimation process:

a. The source must keep track of the number of DUPACKs it
has received before new data is acknowledged;
b. The source should be able to detect delayed ACKs and act
accordingly.

The approach we have chosen to take care of these two issues
can be found in the AckedCount procedure, detailed below,
showing the set of actions to be undertaken upon the reception
of an ACK, for a correct determination of the number of
packets that should be accounted for by the bandwidth
estimation procedure, indicated by the variable acked in the
pseudocode. The key variable is accounted, which keeps track
of the received DUPACKs. When an ACK is received, the
number of segments it acknowledges is first determined
(cumul_ack). If cumul_ack is equal to 0, then the received ACK
is clearly a DUPACK and counts as 1 segment towards the
BWE; the DUPACK count is also updated. If cumul_ack is
larger than 1, the received ACK is either a delayed ACK or a
cumulative ACK following a retransmission event; in that case,
the number of ACKed segments is to be checked against the
number of segments already accounted for (accounted_for). If
the received ACK acknowledges fewer or the same number of
segments than expected, it means that the "missing" segments
were already accounted for when DUPACKs were received,
and they should not be counted twice. If the received ACK
acknowledges more segments than expected, it means that
although part of them were already accounted for by way of
DUPACKs, the rest are cumulatively acknowledged by the
current ACK; therefore, the current ACK should only count as
the cumulatively acknowledged segments. It should be noted
that the last condition correctly estimates the delayed ACKs
(cumul_ack = 2 and accounted_for = 0).

PROCEDURE AckedCount

cumul_ack = current_ack_seqno -
last_ack_seqno;
if (cumul_ack = 0)

 accounted_for=accounted_for+1;
 cumul_ack=1;
endif

if (cumul_ack > 1)
 if (accounted_for >= cumul_ack)
 accounted_for=accounted_for-cumul_ack;
 cumul_ack=1;
 else if (accounted_for < cumul_ack)
 cumul_ack=cumul_ack-
accounted_for;
 accounted_for=0;
 endif
endif

last_ack_seqno=current_ack_seqno;
acked=cumul_ack;

return(acked);

END PROCEDURE

3. TCP Westwood
In this Section we describe how the bandwidth estimation can
be used by the congestion control algorithm executed at the
sender side of a TCP connection. As will be explained, the
congestion window dynamics during slow start and congestion
avoidance are unchanged, that is they increase exponentially
and linearly, respectively, as in current TCP Reno.

The general idea is to use the bandwidth estimate BWE to set
the congestion window (cwin) and the slow start threshold
(ssthresh) after a congestion episode.

We start by describing the general algorithm behavior after n
duplicate ACKs and after coarse timeout expiration.

3.1 Algorithm after n duplicate ACKs
The pseudocode of the algorithm is the following:

if (n DUPACKs are received)

 ssthresh = (BWE*RTTmin)/seg_size;
 if (cwin>ssthresh) /* congestion avoid.
*/
 cwin = ssthresh;
 endif

endif

Note that seg_size identifies the length of a TCP segment in
bits.

During the congestion avoidance phase we are probing for extra
available bandwidth. Therefore, when n DUPACKs are
received, it means that we have hit the network capacity (or
that, in the case of wireless links, one or more segments were
dropped due to sporadic losses). Thus, the slow start threshold
is set equal to the available pipe size when the bottleneck buffer
is empty, which is BWE*RTTmin, the congestion window is set
equal to the ssthresh and the congestion avoidance phase is
entered again to gently probe for new available bandwidth. The

value RTTmin is set as the smallest RTT sample observed over
the duration of the connection. This setting allows the queue be
drained after a congestion episode. During the slow-start phase
we are still probing for the available bandwidth. Therefore the
BWE we obtain after n duplicate ACKs is used to set the slow
start threshold. After ssthresh has been set, the congestion
window is set equal to the slow start threshold only if
cwin>ssthresh. In other words, during slow start, cwin still
features an exponential increase as in the current
implementation of TCP Reno.

3.2 Algorithm after coarse timeout
expiration
The pseudocode of the algorithm is

if (coarse timeout expires)
 ssthresh = (BWE*RTTmin)/seg_size;

 if (ssthresh < 2)
 ssthresh = 2;
 endif;

 cwin = 1;
endif

The rationale of the algorithm is again simple. After a timeout
cwin and ssthresh are set equal to 1 and BWE, respectively, so
that the basic Reno behavior is still captured, while a speedy
recovery is granted by the ssthresh being set to the bandwidth
estimation at the time of timeout expiration.

3.3 TCP Westwood convergence to fair share
An important goal of any TCP implementation is for every
connection to get its “fair share” of the bottleneck. We will use
an informal argument similar to that used for Reno in [14] to
show that TCPW achieves the fair share. Consider the case of
two connections with the same RTTs. Suppose, for the sake of
example, that the RTT is X packet transmission times, and the
bottleneck has X buffers. One connection, say A, starts first. Its
window ”cycles” between X and 2X (as per the TCPW
algorithm described earlier in this Section), each cycle
terminating when buffer overflows. Later, connection B starts,
first in slow start mode, and then in congestion avoidance
mode. In congestion avoidance, during each cycle the windows
A and B grow approximately at the same rate, i.e., one segment
per RTT. Eventually, the bottleneck buffer overflows,
terminating the cycle. One can show that the window at
overflow is:

Wi = Ri (b/C +RTT), for i = A,B;

where R is the achieved rate (i.e., BWE); b is the bottleneck
buffer size; and C is the bottleneck trunk capacity.

This is a general property true for all TCP protocols, and in
particular for TCPW. After overflow, TCPW reduces the
windows to new values Wi’ as follows:

Wi’= Ri (RTT) for i = A, B

Thus, the ratios of the windows A and B are preserved after
overflow. Yet, the ratio WB/WA keeps increasing during
congestion avoidance. Consequently, the B window and
throughput ratchet up at each cycle. Equilibrium is reached
when the two connections have the same windows and the same
bandwidth fair share. Figure 2 graphically illustrates the
convergence to the fix point WA=WB.

This informal proof is validated by actual simulation results. It
can be generalized to many simultaneous connections (all with
the same RTT). It can also be applied to the case when the
bottleneck is affected by random errors equally hitting all
connections.

Figure 2. Convergence toward fair bandwidth sharing.

4. TCP Westwood Performance, Fairness,
and Friendliness

In this Section, we report on the basic performance behavior of
TCPW, its fairness among a number of TCPW connections
sharing a bottleneck link, and its friendliness to coexisting
connections of other TCP variants, such as Reno.

First, the effectiveness of the bandwidth estimation algorithm is
studied using a single TCP connection and a fluctuating UDP
traffic rate. TCPW window dynamics (cwin, ssthresh and
sequence numbers) are then considered. TCPW performance
behavior is compared to the standard and widely used TCP
Reno as well as to TCP SACK [16].

All simulations presented in this paper were run using the LBL
network simulator, 'ns' ver.2 [19].

New simulation modules for TCP Westwood were written and
they are available at [20], while existing modules for
simulations involving TCP Reno and TCP Sack were used. All
simulated TCP receivers implement delayed-ACKs. Notice that
this introduces a complication for our bandwidth estimation
algorithm as delayed ACKs represent noise to be filtered, as
explained in Section 2.3.

Each scenario, involving different bottleneck link capacity,
RTT or number of concurrent connections, includes a single-
bottleneck link as is common in the literature. Intermediate
node buffer capacity is always set equal to the bandwidth-delay
product for the scenario under study. The packet size is set to
400 bytes in all experiments. The ACK arrival pattern is

zero backlog

bottleneck overflow

WA equal bandwidth share

Connection B Window

Connection
A Window

WB

repetitive for each RTT in absence of packet losses (errors or
buffer overflow). Thus, the interval τ should span one or more
RTTs. Experimentally, we have observed that performance is
not very sensitive to the choice of τ as long as τ >RTT. In our
experiments, we set τ equal to 500ms.

4.1 Bandwidth estimation effectiveness
In this Section, we test the effectiveness of the proposed
bandwidth estimation algorithm. For this purpose we consider a
single TCPW connection sharing the bottleneck link with UDP
connections. Packets are queued and transmitted on the link in
FCFS order. In addition to demonstrating the accuracy of the
bandwidth estimation algorithm, this scenario also illustrates
the capability of a TCP Westwood connection to use the
bandwidth left over by dynamic UDP flows. The configuration
simulated here features a 5 Mb/s bottleneck link with a one-way
propagation delay of 30ms. One TCP connection shares the
bottleneck link with two ON/OFF UDP connections, and TCP
and UDP packets are assigned the same priority. Each UDP
connection transmits at a constant bit rate of 1 Mb/s while ON.
Both UDP connections start in the OFF state; after 25s, the first
UDP connection is turned ON, joined by the second one at 50s;
the second connection follows an OFF-ON-OFF pattern at
times 75s, 125s and 175s; at time 200s the first UDP connection
is turned off as well. The UDP connections remain silent until
the end of the simulation. The TCPW connection sends data
throughout the simulation.

The scenario above is intended to demonstrate the effectiveness
of the feedback control used in TCPW when subjected to “step”
and “impulse” stimuli. The behavior of the bandwidth
estimation process is shown in fig. 3.

0

1

2

3

4

5

6

0 50 100 150 200 250 300

Ba
nd

wi
dth

 E
sti

m
ati

on
 (M

b/s
ec

) BW estimate
actual BW

Figure 3. TCPW with concurrent UDP traffic: bandwidth
estimation

4.2 TCPW fairness
Fair bandwidth sharing implies that all connections are
provided with similar opportunity to transfer data. Our
experiments show that TCPW fairness is at least as good, if not
better, than that provided by the widely-used TCP Reno. In the
sample results below we show that two flows with different
E2E round trip times (RTT) share the bandwidth more
effectively under TCPW than under TCP Reno.

0

50

100

150

200

250

0 50 100 150 200

Se
qu

en
ce

 #
in

 S
eg

m
en

ts
/ 1

00

Time (sec)

50 ms Westwood

50 ms Reno

200 ms Westwood
200 ms Reno

Figure 4. Sequence numbers vs. time for long and

short RTT connections without RED
We ran simulations in which connections were subject to 50ms
and 200ms RTT, respectively. Figure 4 and Figure 5 show
sequence number progress for TCPW and Reno connections
without and with RED, respectively. In all cases the short
connection progresses faster as expected. We note however that
TCPW provides better fairness than Reno across different
propagation times. The reason for the superior fairness
exhibited by TCPW is that the long connection suffers less
reduction in cwin and ssthresh. In Reno, cwin reduction is
independent of RTT. The results in Figure 5 show that both
protocols benefit from RED, as far as fairness is concerned.
Remarkably, the improvement in TCPW due to RED was
higher than the improvement in Reno.

0

50

100

150

200

250

0 50 100 150 200

Se
qu

en
ce

 #
in

 S
eg

m
en

ts
/ 1

00

50 ms Westwood

50 ms Reno

200 ms Westwood
200 ms Reno

Figure 5. Sequence numbers vs. time for long and

short RTT connections with RED

4.3 TCPW friendliness
Friendliness is another important property of a TCP protocol.
TCPW must be “friendly” to other TCP variants. That is,
TCPW connections must be able to coexist with connections
from TCP variants while providing opportunities for all
connections to progress satisfactorily. At least, TCPW
connections should not result in starvation of connections
running other TCP variants. Better yet, the bandwidth share of
TCPW connections should be equal to their fair share.

We ran simulation experiments with the following parameters:
2-Mbps bottleneck link, 20 flows total, all flows with 100ms
RTT. With all 20 connections running TCPW, the average
throughput per connection was 0.0994 Mbps. All 20 Reno

connections resulted in an average throughput of 0.0992 Mbps.
As predicted, we got the same results for the two schemes. We
then ran 10 Reno with 10 Westwood connections sharing the
same 2Mbps bottleneck link over a path of 100ms RTT. The
average throughput for a TCPW connection went up to 0.1078,
and that of a Reno connection went down to 0.0913. This
shows that TCPW behavior departs from “fair share” by 16%
(TCPW gains 8% and TCP Reno loses 8%). This unfairness is
rather moderate and it can be tolerated as it allows for
coexistence with Reno.

To probe the friendliness issue further, we also carried out
actual measurements using our TCPW Linux implementation
in our lab. Figure 6 shows the topology of our lab test bed. The
link emulator is used to vary the link propagation time and error
characteristics.

Figure 6. Experimental test bed layout

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 1 2 3 4 5

Av
er

ag
e

Th
ro

ug
hp

ut
(M

b/
Se

c)

Over good link
WestwoodReno

 0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 1 2 3 4 5

Av
er

ag
e

Th
ro

ug
hp

ut
(M

b/
Se

c)

Over lossy link
WestwoodReno

Figure 7. Average throughput vs. No. of Reno connections

over good and lossy link (5 connections total)

We measured the throughput for a total of 5 connections with a
variable Reno/ TCPW mix. Then, to evaluate the friendliness of
TCPW under stress, we introduce a relatively high error rate on
the bottleneck link, namely 1% packet loss (See Figure 7). This
error rate is actually appropriate for wireless links as we shall
discuss later. Note that TCP West shines in presence of line
errors, so, friendliness in the error situation is even more
difficult to establish than in error free operation.

The RTT was 100ms. Error rates and propagation delays are
introduced in our test bed via a link/network emulator. Figure 7
shows the average throughput per connection for TCPW and
for Reno. The lower average throughput line is that of the Reno
connections. The horizontal axis represent the number of Reno
connections in the mix. For example, at the point marked 3 on
the horizontal line, the measurement experiment includes 3
Reno connections and 2 TCPW connections The results in
Figure 7 illustrate two important points. First, TCPW has a
significant edge in a high-error-rate environment: 5 TCPW get
10% more throughput than 5 TCP Reno. We will press more on
this later. Secondly, friendliness is preserved. Even though
TCPW has an advantage over Reno in error-prone
environments, Reno connections were not starved. In fact, the
introduction of TCPW connections into the mix reduces the
average throughput of a Reno connection only by a minimal
amount. Thus, for practical purposes, we can claim that TCPW
is friendly.

5. TCPW Performance In Mixed (Wired and

Wireless) Networks
TCPW is being proposed in this paper as an end-to-end solution
to error and congestion control in mixed wired and wireless
networks. In view of this claim, a number of different scenarios
are studied below to show the benefits of using TCPW in such
wired/wireless environments. Independent and correlated loss
models are used. Ground radio as well as satellite scenarios are
developed and studied.

5.1 Independent loss model in ground radio

environment

Figure 8. A simple Simulation Topology

Figure 8 shows a topology of a mixed network with a wired
portion including a 10-Mbps link between a source node and a
base station. The propagation time over the wired link is
initially assumed to be 45ms. Later, the propagation time is
varied from 0 to 250ms to represent a variety of wired network
environments ranging from campus to intercontinental
connections.

S D

10Mb
45ms

BS

2Mb
0.01ms

0

0.5

1

1.5

2

0.01 0.1 1

Th
ro

ug
hp

ut
 (M

b/
se

c)

Loss rate (% packets)

Westwood
RenoSack

Figure 9. Throughput vs. error rate of the wireless link

The wireless portion of the network is a very short 2-Mbps
wireless link with a propagation time of 0.01ms. The wireless
link is assumed to connect the base station to a destination
mobile terminal. Errors are assumed to occur in both directions
of the wireless link.

We compare the throughput of TCPW to that of Reno and
SACK assuming independent (Bernoulli) errors ranging from 0
to 5% packet loss probability. The error model assumed here is
equivalent to the “exponential error” model in which the time
between successive errors is exponentially distributed [3]. The
range of error rates assumed here is also similar to the range
used in [3]. The results in Figure 9 show that TCPW gains up to
394 % over Reno or SACK. This gain occurs at a realistic
packet error probability of 1%.

To assess TCPW throughput gain and its relation to the E2E
propagation time, we ran simulations with the wired portion
propagation time varying from 0 to 250ms. The results in
Figure 10 show a significant gain for TCPW of up to 567%, at a
propagation time of 100ms. When the propagation time is small
(say, less than 5ms), all protocols are equally effective. This is
because a small window is adequate and window optimization
is not an issue. TCPW reaches maximum improvement over
Reno and Sack as the propagation time increases to about
100ms. After that, in this experiment, the gain starts to decrease
as the feedback information used to estimate the available
bandwidth arrives too late to be of significant help to TCPW.

0

0.5

1

1.5

2

0 50 100 150 200 250

Th
ro

ug
hp

ut
 (M

b/
se

c) Westwood
Reno
Sack

Figure 10. Throughput vs. one-way propagation delay

Simulation results in Figure 11 show that TCPW gains also
increase significantly as the bottleneck link transmission speed
increases (again, because what matters is the window size
determined by the bandwidth-delay product). Thus, TCPW is
more effective than TCP Reno in utilizing the Gbps bandwidth
provided by new-generation, high-speed networks. Figure 11
shows that the improvement obtained via TCPW increases to
approximately 550% when the wireless link speed reaches 8
Mbps. The error model is still Bernoulli with parameter 0.5%,
and the E2E propagation time is 45ms.

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 (M

b/
se

c)

Transmission speed of the Bottleneck link (Mb/sec)

Uniform error rate of the bottleneck link: 0.5%
WestwoodRenoSack

Figure 11 Throughput vs. link capacity

Window dynamics of TCPW and of TCP Reno are presented in
Figure 12 and Figure 13 below. The graphs show the improved
window dynamics in TCPW. The cwin and ssthresh values are
consistently higher than the corresponding values in Reno, thus
yielding higher throughput .

Next we compare TCPW to Snoop, the leading local strategy
shown to provide the biggest improvement over TCP Reno [4].
Published results show that Snoop provides approximately a
400% improvement over an E2E approach based on TCP Reno
when the error rate is 1 bit in 64 KBytes and the round trip
propagation time is 135ms. Our simulations with similar
parameter values show that TCPW provides a 382%

0

20

40

60

80

100

0 20 40 60 80 100

S
eg

m
en

ts

ssthresh
congestion window

Figure12. TCP Westwood over lossy link—cwin and
ssthresh

0

20

40

60

80

100

0 20 40 60 80 100

Se
gm

en
ts

Time (Sec)

ssthreshcongestion window

Figure 13. TCP Reno over lossy link—cwin and ssthresh

improvement over Reno. This shows that TCPW and Snoop
gains are remarkably (and enticingly) close. We plan to probe
further the issue of effectiveness of local versus E2E error
recovery via simulation and measurements. From the
qualitative and protocol implementation standpoint, however,
we note that TCPW is completely end-to-end, and does not
require any support from network or link layers. It does not
have the scalability problems that Snoop may encounter as the
number of mobile terminals increase. Further, the effectiveness
of Snoop in wireless subnets including multiple base stations
and handoffs is not clear.

Explicit Loss Notification (ELN) is an E2E scheme that is
introduced and assessed in [3]. Basically, the method provides
explicit notification from TCP receiver to TCP sender that a
loss due to a link error has occurred. The lost packet is also
identified to the Sender TCP entity. Using the same parameter
values above (1 bit in 64 Kbytes error rate, and 135ms
propagation time), ELN is shown to provide a gain of
approximately 200% over Reno. In comparison, TCPW
provides 382%, closer to Snoop performance. Further, ELN
assumes that the destinations can detect errors on a link and
identify the packet and its TCP source. These assumptions are
not likely to be uniformly satisfied for various error causes and
various link technologies, thus the limitation in versatility of
ELN in addition to its limited gain over Reno.

We compared, via simulation, TCPW to BA-TCP [10], an
alternative strategy where the routers explicitly measure and
relay the bandwidth available for each connection back to the
TCP sender. At 40ms round trip time, and 1 bit in 100KB error
rate, BA-TCP's improvement over Reno is 202%. For TCP
Westwood, the throughput improvement at the same parameter
values is 161%. This is quite remarkable considering that BA-
TCP measures the bandwidth actually available for a
connection at the bottleneck router, while TCPW works with no
support from routers to estimate the available bandwidth at the
bottleneck. Note that the router functionalities required by BA-
TCP are not available in today’s routers.

5.2 Burst error models in a ground radio

environment
To study TCPW performance with correlated errors, we use the
2-state Markov models following [1][5]. In such models, burst
errors occur at a high rate due to a variety of conditions

associated mostly with terminal mobility. Such conditions
include variable fading, blackouts due to shadowing, and the
like. Figure 14 below depicts the 2-state Markov model. The
wireless link is assumed to be in one of two states: Good or
Bad. In the Good state, a bit (or packet) error Bernoulli model
is assumed. The time intervals between bit errors is thus
exponentially distributed (memoryless channel errors). In
addition, a link is assumed to stay in the Good state a time
interval that is exponentially distributed with parameter λgb .
The time spent in the Bad state is also exponentially distributed
but with parameter λbg. In the Bad state we assume that errors
are still Bernoulli, however, the rates of errors in the Bad state
are much higher. For the simulation experiments below we vary
the error rate in the bad state depending on the specific link
conditions we want to study. To represent fading conditions,
the bit error rate is assumed to range from 0 to 30%. For
blackouts, the error rate is 100%.

Figure 14. 2-state Markov Model for Burst Error
Characterization

 Simulation results using the 2-state Markov models show that
TCPW improves throughput for links with fading and blackouts
as discussed below.

(a) Fading:
Let the Bad state represent fading conditions, and let the mean
duration of Good and Bad states be 8 and 4 sec respectively.
The error rate in the Good state is assumed to be 0.001% packet
loss, and the error rate in the Bad state is varied from 0 to 30%
packet loss rate. The results in Figure 15 show the improvement
obtained with TCPW over Reno or SACK. TCPW increases
throughput by up to 300%. This is achieved when the error rate
in the Bad state is 5 %. When the error rate is higher, all
protocols perform poorly.

When the error rate is less than 5%, TCPW provides about
150% improvement. We also varied the link speed to determine
its impact on the protocols performance.

0

0.5

1

1.5

2

5 10 15 20 25 30

Th
ro

ug
hp

ut
 (M

b/
se

c) Westwood
Reno
Sack

Figure 15. Throughput vs. error rate of the bad state

λbg

 Good Bad

λgb

0
0.5

1
1.5

2
2.5

3
3.5

4

2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (M

b/
se

c)

Transmission speed of the Bottleneck link (Mb/sec)

error rate of the bad state: 5%
Westwood

RenoSack

Figure. 16. Throughput vs. link capacity in 2-state error
model

Figure 16 shows that TCPW improvement increases as the
wireless link (bottleneck link in this case) increases (as
expected, since a similar trend was observed also in wired
links). At 10 Mbps link speed, a 400% throughput improvement
is achieved at the same error rate in Bad state of 5% packet
loss.

(b) Blackouts:
Let us now assume that the Bad state represents a blackout,
where a base station becomes temporarily not visible to a
terminal due to mobility. The mean duration for the Good state
is 4 sec; the mean duration of the Bad state varies between 0
and 0.5 sec, Figure 17 shows the throughput improvement
obtained by TCPW to be 167 % over Reno and SACK when the
mean blackout duration is 0.1 sec. For longer blackouts, TCP
timeouts occur and all protocols are equally affected.

0

0.5

1

1.5

2

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Th
ro

ug
hp

ut
 (M

b/
se

c) Westwood
Reno
Sack

Figure 17 Throughput vs. average duration of blackout

5.3 LEO Satellite Model
Another environment where TCPW is likely to be valuable is
the LEO satellite system. LEO Satellites present an
environment with varying link quality and relatively long
propagation delay. Also, in the future, higher transmission
speeds are expected. That is where TCPW would be most
beneficial.

We considered for this study a scenario where a single hop, up
to the satellite and down to an earth terminal, connects a

terminal to a gateway and from there to the terrestrial network.
One way (e.g. terminal to gateway) propagation time is
assumed to be 100ms. The error rate is assumed 0.1% in normal
operating conditions. Occasionally, if the LEO system supports
satellite diversity, a handoff to a different LEO satellite
(different orbit) becomes necessary to overcome the blocking
due to buildings, thick foliage etc. During handoff, we assume
all packets are lost. In our model, the handoff from one satellite
to another needs 100ms to complete, and the period between
handoffs is 4s, say. Figure 18 below shows the major
improvements of TCPW over Reno and SACK, especially at
high speeds.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2 1.4

Th
ro

ug
hp

ut
 (M

b/
se

c)

Transmission speed of the LEO link (Mb/sec)

Westwood
Reno
Sack

Figure 18. Throughput vs. link capacity of the Satellite link

6. Conclusions and Future Research
In this paper we have proposed a new version of the TCP
protocol, TCP Westwood, (TCPW for short) aimed at
improving performance under random or sporadic losses.
TCPW has been tested through simulation, showing
considerable throughput gains in almost all wireless scenarios.

In retrospect, the new scheme can be viewed as one more step
in the TCP evolution. TCP Tahoe resets cwin to one after a loss.
TCP Reno halves cwin after three duplicate ACKs. TCP
Westwood introduces a "faster" recovery mechanism to avoid
over-shrinking cwin after three duplicate ACKs. It does so by
taking into account the end-to-end estimation of the bandwidth
available to TCP. The use of bandwidth estimation feedback to
control the congestion window has an effect that goes beyond
faster recovery. Namely, TCP window congestion control is
based not solely on packet loss (which itself is an ambiguous
congestion indicator in presence of wireless links), but also on
the bandwidth estimate at the time of loss. The benefits of using
bandwidth estimation (in addition to packet loss) have been
amply demonstrated in a very broad range of wireless
scenarios.

The issue of friendliness, raised by previous reviewers of this
work, has been addressed. A qualitative proof of fair behavior
under appropriate conditions has been provided. “Unfriendly”
trends due to TCPW “aggressiveness” have been detected in
our experiments, but were shown to be contained and never
severe enough to lead to starvation.

The code modifications required to implement TCP Westwood
are comparable to the ones implemented in the transition from
TCP Tahoe to TCP Reno. As in the Tahoe to Reno transition, a

major advantage of the TCP Westwood modification is that it
affects only the source TCP (as opposed to other variants such
as TCP SACK that require also destination modifications). This
allows a TCP Westwood source to interwork with arbitray
destinations in the Internet.

Work is in progress in many directions. Some of these
directions were indicated by the anonymous referees – we
thank them for their thorough reviews and valuable comments.
We are planning to include in TCPW the NewReno feature that
allows efficient recovery from multiple losses in the same
window. We are aware that in some cases the bottleneck link is
in the backward path, from receiver to sender. In such cases, the
bottleneck must be ”fairly” shared among Data Packets (in
some connections) and ACKs (in some other connections). We
plan to attack this problem by defining first a suitable measure
of “fairness” between Data and ACK streams. If fairness is
defined as equal throughput for all connections regardless
whether Data or ACK bound, and Data packet size is the same
for all connections, one can show that TCPW provides a fair
solution – at equilibrium all connections measure the same
BWE. The comparison of TCPW with link level techniques
such as Snoop deserves further study. It is clear that link level
recovery is in general much more powerful than end to end
recovery since it isolates and corrects the loss “in loco”. For
instance, suppose that the bottleneck is in the wired network
and one of the connections sharing the bottleneck goes over a
wireless, lossy link. With E2E recovery (TCPW and TCP Reno
alike) the wireless connection is heavily penalized with respect
to the others. With link layer recovery (eg, Snoop) fair sharing
is enforced. Next, TCPW performs poorly when random packet
loss rate exceeds a few percent. Snoop, on the other hand, is
quite robust to high error rates. We are now investigating
TCPW enhancements that will in part correct these
deficiencies.. We plan to further refine our bandwidth
estimation and filtering method, in order to improve TCPW
“friendliness”. Finally, we intend to pursue the development
of control theoretical models that will enable us to study the
stability of TCPW as a function of the various systems
parameters.

7. Acknowledgments
The authors take great pleasure in acknowledging the valuable
contribution to this work by Tienshiao Ma, Bryan Ng, Giovanni
Pau and Cathy Yang. who valiantly implemented TCPW under
Linux and conducted the lab measurements experiments
reported above.

8. References
[1] Abouzeid, A.A, S. Roy, M. Azizoglu. Stochastic Modeling

of TCP over Lossy link. INFOCOM 2000, Tel Aviv, Israel,
March 2000.

[2] mostrA &&& ,K. J., B. Wittenmark, Computer controlled
systems, Prentice Hall, Englewood Cliffs, N. J., 1997].

[3] Balakrishnan, H., V. N. Padmanabhan, S. Seshan, and R. H.
Katz,. A Comparison of Mechanisms for Improving TCP
Performance over Wireless Links. IEEE/ACM Transactions
on Networking, December 1997.

[4] Balakrishnan, H., S. Seshan, E. Amir and R. H. katz.
Improving TCP/IP Performance Over Wireless Networks.
MOBICOM’95, Berkeley, CA, USA, November 1995

[5] Balakrishnan, H., and Randy H. Katz. Explicit Loss

Notification and Wireless Web Performance. Proc. IEEE
GLOBECOM’98 Internet Mini-Conference, Sydney,
Australia, November 1998.

[6] Bonald, T., Comparison of TCP Reno and TCP Vegas:
Efficiency and Fairness. In Proceedings of
PERFORMANCE'99, Istanbul, Turkey, October 1999.

[7] Casetti, C., M. Gerla, S. Lee, S Mascolo and M. Sanadidi,
"TCP with Faster Recovery", MILCOM 2000, Los
Ange les, CA, October 2000.

[8] Clark, D., "The design philosophy of the DARPA Internet
protocols", Proc. of Sigcomm88 in ACM Computer
Communication Review, vol. 18, no. 4, pp. 106-114, 1988.

[9] Gerla, M., R. Lo Cigno, S. Mascolo, and W. Weng.
Generalized Wind ow Advertising for TCP Congestion
Control. CSD-TR 990012, UCLA, CA, USA, February
1999.

[10] Gerla, M., W. Weng and R. Cigno, "Bandwidth feedback
control of TCP and real time sources in the Internet",
GLOBECOM‘2000, San Francisco, CA, USA, November
2000.

[11] T. Henderson, Satellite Transport Protocol Specification.
Technical Report, University of California, Berkeley,
1999.

[12] Hengartner, U., J. Bolliger, and T. Gross. TCP Vegas
Revisited. In Proceedings of IEEE INFOCOM'2000, Tel
Aviv, Israel, March 2000.

[13] Jacobson, V., Congestion Avoidance and Control. ACM
Computer Communications Review, 18(4):314--329,
August 1988.

[14] Kurose, J., and K. Ross, “Computer Networking: A Top-
Down Approach Featuring the Internet”, Addison Wesley,
2000

[15] Li, S. Q. and C. Hwang, “Link Capacity Allocation and
Network Control by Filtered Input Rate in High speed
Networks”, IEEE/ACM Transections on Networking, vol.
3, no. 1, Feb. 1995, pp. 10-25

[16] Mathis, M., J. Mahdavi, S.Floyd, and A.Romanow. TCP
Selective Acknowledgemwnt Options. RFC 2018, April
1996

[17] Mitzel, D., Overviw of 2000 IAB Wireless
Internetworking Workshop, RFC 3002.

[18] Stevens, W.R. TCP/IP Illustrated, vol. 1. Addison Wesley,
Reading, MA, USA, 1994

[19] ns-2 network simulator (ver 2). LBL, URL: http://www-
mash.cs.berkeley.edu/ns.

[20] TCP Westwood modules for ns-2. URL:
http://www.telematics.polito.it/casetti/tcp-westwood.

