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Abstract 
TCP Westwood (TCPW) is a sender-side modification of the 
TCP congestion window algorithm that improves upon the 
performance of TCP Reno in wired as well as wireless 
networks. The improvement is most significant in wireless 
networks with lossy links, since TCP Westwood relies on end-
to-end bandwidth estimation to discriminate the cause of packet 
loss (congestion or wireless channel effect) which is a major 
problem in TCP Reno.  An important distinguishing feature of 
TCP Westwood with respect to previous wireless TCP 
“extensions” is that it does not require inspection and/or 
interception of TCP packets at intermediate (proxy) nodes. 
Rather, it fully complies with the end-to-end TCP design 
principle. The key innovative idea is to continuously measure at 
the TCP source the rate of the connection by monitoring the 
rate of returning ACKs. The estimate is then used to compute 
congestion window and slow start threshold after a congestion 
episode, that is, after three duplicate acknowledgments or after 
a timeout. The rationale of this strategy is simple: in contrast 
with TCP Reno, which "blindly" halves the congestion window 
after three duplicate ACKs, TCP Westwood attempts to select a 
slow start threshold and a congestion window which are 
consistent with the effective bandwidth used at the time 
congestion is experienced. We call this mechanism faster 
recovery. The proposed mechanism is particularly effective 
over wireless links where sporadic losses due to radio channel 
problems are often misinterpreted as a symptom of congestion 
by current TCP schemes and thus lead to an unnecessary 
window reduction. Experimental studies reveal improvements 
in throughput performance, as well as in fairness. In addition, 
friendliness with TCP Reno was observed in a set of 
experiments showing that TCP Reno connections are not 
starved by TCPW connections. Most importantly, TCPW is 
extremely effective in mixed wired and wireless networks 
where throughput improvements of up to 550% are observed. 
Finally, TCPW performs almost as well as localized link layer 
approaches such as the popular Snoop scheme, without 
incurring the O/H of a specialized link layer protocol.  
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1. Introduction 
Effective error and congestion control for heterogeneous (wired 
and wireless) networks has been an active area of research 
recently. End-to-end, Link Layer, and Split Connection 
approaches have been suggested and their relative merits 
extensively assessed in recent studies [17]. One conclusion 
drawn from these studies is that while end-to-end schemes are 
not as effective as local recovery techniques in handling 
wireless losses, they are promising since significant gains can 
be achieved without extensive support at the network layer in 
routers and base stations [3]. With these motivations, we 
propose in this paper a TCP-based end-to-end (E2E) approach 
to error recovery and congestion control in wired/wireless 
networks and study its performance. 
 
The well-known challenge in providing TCP congestion control 
in mixed environments is that current TCP implementations 
rely on packet loss as an indicator of network congestion. In the 
wired portion of the network a congested router is indeed the 
likely reason of packet loss; on a wireless link, on the other 
hand, a noisy, fading radio channel is the more likely cause of 
loss. This creates problems in TCP Reno since it does not 
possess the capability to distinguish and isolate congestion loss 
from wireless loss. As a consequence, TCP Reno reacts to 
wireless loss with a drastic reduction of the congestion window, 
hence of the sender transmission rate, when the best strategy 
would in fact be to increase the retransmission rate.  
 
Approaches to address this problem have been discussed and 
compared in the excellent work by Balakrishnan et al. [3]-[5]. 
Three alternative approaches: E2E, Split Connection, and 
Localized Link Layer methods were carefully contrasted. The 
best performing approach was  shown to be a localized link 
layer solution applied directly to the wireless links.  A clever  
“snooping” protocol is introduced. The protocol appropriately 
called “Snoop” monitors the packets flowing over the wireless 
link as well as their related acknowledgments. The protocol 
entities cache copies of TCP data packets and monitor the 
ACKs in the reverse direction. If a packet loss is detected (i.e., 
through duplicate acknowledgments, DUPACKs), the cached 
copy is used for local retransmission, and any packet carrying 
feedback information back to the TCP sender is extracted so as 
to avoid “premature” retransmission at the TCP sender. The 
protocol is effective in reducing E2E retransmissions, and, 
more importantly, in preventing the associated reduction in 
congestion window size. 
 



Snoop, however, has its own limitations. First, it requires a 
snoop proxy in the base station. Also, if the TCP sender is the 
mobile, the TCP code must be modified to respond to Explicit 
Loss Notification (ELN) packets from the base station.  
In view of the limitations introduced by link layer solutions, it 
is of interest thus to explore E2E recovery solutions that are 
independent of the link layer, and thus more versatile.  
 
In this paper we propose to handle wireless losses using a 
modified version of TCP Reno. This new version, which we 
named TCP Westwood (or TCPW for short), enhances the 
window control and backoff process. Namely, a TCPW sender 
monitors the acknowledgment reception rate and from it 
estimates the data packet rate currently achieved by the 
connection. Whenever a sender perceives a packet loss (i.e. a 
timeout occurs or 3 duplicate ACKs are received), the sender 
uses the bandwidth estimate to properly set the congestion 
window (cwin) and the slow start threshold (ssthresh). By 
backing off to cwin and ssthresh values that are based on the 
estimated available bandwidth (rather than simply halving the 
current values as Reno does), TCP Westwood avoids overly 
conservative reductions of cwin and ssthresh; and thus it 
ensures a faster recovery. Experimental studies reveal the 
benefits of the intelligent backoff strategy in TCPW: better 
throughput, goodput, and delay performance, as well as fairness 
even when competing connections differ in their end-to-end 
propagation times. In addition, our studies of TCPW 
friendliness when coexisting with TCP Reno is reassuring since 
we have observed that TCP Reno connections are not starved in 
the presence of TCPW connections. Most importantly, TCPW 
is very effective in handling wireless loss. This is because 
TCPW uses the current estimated rate as reference for resetting 
the congestion window. The current rate is only marginally 
impacted by loss (as long as loss is a relatively small fraction of 
data rate). The simulation results presented in Section 4 confirm 
this claim. For example, a throughput improvement of up to 
550% over TCP Reno has been observed.  
 
Other TCP variants that use bandwidth estimation to set the 
congestion window have been proposed before. To our 
knowledge, however, such schemes require the intervention of 
the network layer. For example, the BA-TCP (Bandwidth 
Aware-TCP) scheme [10] relies on intermediate routers to take 
measurements of available bandwidth and compute the “fair 
share” for the TCP connections. The fair share value is 
piggybacked in the TCP header and conveyed to the TCP 
source. The latter uses it to appropriately set its cwin and 
ssthresh parameters. BA-TCP and TCPW are similar in their 
reliance on bandwidth information to set congestion control 
parameters. However, while BA-TCP requires new network 
layer functions to measure available bandwidth and compute 
fair share, TCPW relies only on information readily available in 
the current TCP header. TCPW does not require any support 
from lower layers, and thus strictly adheres to layer separation 
and modularity principles. 
 
The TCPW bandwidth estimation and congestion control 
algorithms are discussed in Section 2 and 3 below. TCPW 
performance behavior in wired and in mixed networks is 
studied in Sections 4 and 5. Section 6 concludes the paper.  
 

2. End-to-End Bandwidth Measurement  
2.1 The ACK-based measurement procedure 
A fundamental design philosophy of the Internet TCP 
congestion control algorithm is that it must be performed end-
to-end. The network is considered as a "black box''. A TCP 
source cannot receive any explicit congestion feedback from 
the network. Therefore the source, to determine the rate at 
which it can transmit, must probe the path by progressively 
increasing the input load (through the slow start and congestion 
avoidance phases) until implicit feedback, such as timeouts or 
duplicate acknowledgments, signals that the network capacity 
has been reached.  
 
The importance of the end-to-end principle [8] can never be 
overemphasized. In fact, it is this principle that guarantees the 
delivery of data over any kind of heterogeneous network. 
 
The key idea of TCP Westwood is to exploit TCP 
acknowledgment packets to derive rather sophisticated 
measurements. We propose that a source perform an end-to-end 
estimate of the bandwidth available along a TCP connection by 
measuring and averaging the rate of returning ACKs.  
 
After a congestion episode (i.e. the source receives three 
duplicate ACKs or a timeout) the source uses the measured 
bandwidth to properly set the congestion window and the slow 
start threshold, starting a procedure that we will call faster 
recovery. When an ACK is received by the source, it conveys 
the information that an amount of data corresponding to a 
specific transmitted packet was delivered to the destination. If 
the transmission process is not affected by losses, simply 
averaging the delivered data count over time yields a fair 
estimation of the bandwidth currently used by the source. 
 
When duplicate ACKs (DUPACKs), indicating an out-of-
sequence reception, reach the source, they should also count 
toward the bandwidth estimate, and a new estimate should be 
computed right after their reception. 
 
However, the source is in no position to tell for sure which 
segment triggered the DUPACK transmission, and it is thus 
unable to update the data count by the size of that segment. An 
average of the segment sizes sent thus far in the ongoing 
connection should therefore be used, allowing for corrections 
when the next cumulative ACK is received. For the sake of 
simplicity, we assume all TCP segments to be of the same size.  
 
Following this assumption, we will further assume that 
sequence numbers are incremented by one per segment sent, 
although the actual TCP implementation keeps track of the 
number of bytes instead: the two notations are interchangeable 
if all segments have the same size. 
 
It is important to notice that, immediately after a congestion 
episode, followed either by a timeout or, in general, n duplicate 
ACKs, the bottleneck is at saturation and the connection 
delivery rate is equal to the share of the best-effort bandwidth 
(i.e., saturation bandwidth) available to that connection. At 
steady state, under proper conditions,  as  stated in  Section 3.3,  
 
 



this actually should be the “fair share”. The saturation condition 
is confirmed by the fact that packets have been dropped, an 
indication that one or more intermediate buffers are full. Before 
a congestion episode, the used bandwidth is less than or equal 
to the available bandwidth because the TCP source is still 
increasing its window to probe the network capacity. 
 
As a result, TCP Westwood adjusts its input by taking into 
account the network capacity that is available to it at the time of 
congestion, whereas the current TCP Reno simply halves the 
congestion window. 
 
2.2 Filtering the ACK reception rate. 
If an ACK is received at the source at time tk, this implies that a 
corresponding amount of data dk  has been received by the TCP 
receiver. Therefore, we can measure the following sample of 
bandwidth used by that connection as: 
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where tk−1 is the time the previous ACK was received. Since 
congestion occurs whenever the low-frequency input traffic rate 
exceeds the link capacity [15], we employ a low-pass filter to 
average sampled measurements and to obtain the low-
frequency components of the available bandwidth. Notice that 
this averaging is also critical to filter out the noise due to 
delayed acknowledgments.  
 
The choice of the filter is important. According to our 
experience, simple exponential averaging of the kind used by 
TCP for RTT estimation is unable to efficiently filter out high-
frequency components of the bandwidth measurements. We 
propose the following discrete time filter which is obtained by 
discretizing a continuous low-pass filter using the Tustin 
approximation [19] We obtain:   
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where 

kb̂  is the filtered measurement of the available 

bandwidth at time ktt = , and 1/τ is the cut-off frequency of the 
filter. The structure of filter (1) is simple. To understand how it 
works it is useful to consider a constant interarrival time 

10/1 τ=∆=− − kkk tt . Then, filter (1) becomes a filter with 
constant coefficients 
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where 9.0=a . The particular form (2) shows that the new 
value kb̂  is made by the 90% of the previous value 1

ˆ
−kb  plus 

the 10% of the arithmetic average of the last two sample bk and 
bk−1. Even though the filter (2) is useful to explain how the 
average is computed, it cannot be used because in packet-
switched networks the interarrival time is not constant. To 
counteract the effect of time-varying interarrival time, the 
coefficients of filter (1) depend on 1−− kk tt . The effect of 
using time-varying coefficients is easy to understand. When the 
interarrival time increases, the last value 1

ˆ
−kb  should have less 

significance, since it represents an older value, whereas the 
significance of recent samples should be higher. This is exactly 
what happens with filter (1): the a coefficient decreases when 
the interarrival time increases meaning that the previous value 

1
ˆ

−kb  has less significance with respect to the last two recent 
samples which are multiplied by (1−a). 
 
Finally, filter (1) has a cut-off frequency equal to 1/τ. This 
means that all frequency components above 1/τ are filtered out. 
According to the Nyquist sampling theorem, in order to sample 
a signal with bandwidth 1/τ a sampling interval less or equal to 
τ/2 is necessary. But, since the ACK stream may be irregular 
(for instance, no ACKs are returned when the sender is idle), 
the sampling frequency constraint cannot be guaranteed. To 
guarantee the Nyquist constraint and thus preserve the low pass 
filter effect, we establish that if a time τ/m (m≥2) has elapsed 
since the last received ACK without receiving any new ACK, 
then the filter assumes the reception of a virtual sample bk=0. 

The situation is shown in Fig. 1 below, where 1−kt  is the time 

an ACK is received, 
jkt +ˆ  are the arrival times of the virtual 

samples, with mtt jkjk /ˆˆ 1 τ=− +++  for j=0,n-1, 0=+ jkb  for 
j=0,n-1 are the virtual samples and 
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+
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d
b  is the sample computed when the 

ACK is received at nkt + . 
 
It is interesting to look at the form that filter (1) takes in the 
persistent absence of ACKs from t=tk: that is, in the absence of 
ACKs the estimated bandwidth exponentially goes to zero. 
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 Figure.1. Bound on the maximum sampling interval obtained by inserting virtual sample   
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In our experiments, m was set to 2. 
 
2.3 On the effects of delayed and cumulative 
ACKs on bandwidth measurement 
As previously stated, DUPACKs should count toward the 
bandwidth estimation, since their arrival indicates a 
successfully received segment, albeit in the wrong order. As a 
consequence, a cumulative ACK should only count as one 
segment's worth of data since duplicate ACKs ought to have 
already been taken into  account. However, the matter is further 
complicated by the issue of delayed ACKs. The standard TCP 
implementation provides for an ACK being sent back once 
every other in-sequence segment received, or if a 200-ms 
timeout expires after the reception of a single segment [18]. 
The combination of delayed and cumulative ACKs can 
potentially disrupt the bandwidth estimation process.  
 
We therefore stress two important aspects of the bandwidth 
estimation process: 
 
a. The source must keep track of the number of DUPACKs it 
has received before new data is acknowledged; 
b. The source should be able to detect delayed ACKs and act 
accordingly. 
 
The approach we have chosen to take care of these two issues  
can be found in the AckedCount procedure, detailed below, 
showing the set of actions to be undertaken upon the reception 
of an ACK, for a correct determination of  the number of 
packets that should be accounted for by the bandwidth 
estimation procedure, indicated by the variable acked in the 
pseudocode. The key variable is accounted, which keeps track 
of the received DUPACKs. When an ACK is received, the 
number of segments it acknowledges is first determined 
(cumul_ack). If cumul_ack is equal to 0, then the received ACK 
is clearly a DUPACK and counts as 1 segment towards the 
BWE; the DUPACK count is also updated. If cumul_ack is 
larger than 1, the received ACK is either a delayed ACK or a 
cumulative ACK following  a retransmission event; in that case, 
the number of ACKed segments is to be checked against the 
number of segments already accounted for (accounted_for). If 
the received ACK acknowledges fewer or the same number of 
segments than expected, it means that the "missing" segments 
were already accounted for when DUPACKs were received, 
and they should not be counted twice. If the received ACK 
acknowledges more segments than expected, it means that 
although part of them were already accounted for by way of 
DUPACKs, the rest are cumulatively acknowledged by the 
current ACK; therefore, the current ACK should only count as 
the cumulatively acknowledged segments. It should be noted 
that the last condition correctly estimates the delayed ACKs 
(cumul_ack = 2 and accounted_for = 0).  
 
PROCEDURE AckedCount 
 
cumul_ack = current_ack_seqno - 
last_ack_seqno; 
if (cumul_ack = 0)  

  accounted_for=accounted_for+1; 
  cumul_ack=1; 
endif 
 
if (cumul_ack > 1)  
  if (accounted_for >= cumul_ack)  
    accounted_for=accounted_for-cumul_ack; 
    cumul_ack=1; 
  else if (accounted_for < cumul_ack)  
         cumul_ack=cumul_ack-
accounted_for; 
         accounted_for=0; 
  endif 
endif 
 
last_ack_seqno=current_ack_seqno; 
acked=cumul_ack; 
 
return(acked); 
 
END PROCEDURE 
 
3. TCP Westwood   
In this Section we describe how the bandwidth estimation can 
be used by the congestion control algorithm executed at the 
sender side of a TCP connection. As will be explained, the 
congestion window dynamics during slow start and congestion 
avoidance are unchanged, that is they increase exponentially 
and linearly, respectively, as in current TCP Reno.  
 
The general idea is to use the bandwidth estimate BWE  to set 
the congestion window (cwin) and the slow start threshold 
(ssthresh) after a congestion episode.  
 
We start by describing the general algorithm behavior after n 
duplicate ACKs and after coarse timeout expiration. 
 
3.1 Algorithm after n duplicate ACKs 
The pseudocode of the algorithm is the following: 
 
if (n DUPACKs are received) 
   
  ssthresh =  (BWE*RTTmin)/seg_size; 
  if (cwin>ssthresh) /* congestion avoid. 
*/ 
    cwin = ssthresh; 
  endif 
   
endif 
 
Note that seg_size identifies the length of a TCP segment in 
bits. 
 
During the congestion avoidance phase we are probing for extra 
available bandwidth. Therefore, when n DUPACKs are 
received, it means that we have hit the network capacity (or 
that, in the case of wireless links, one or more segments were 
dropped due to sporadic losses). Thus, the slow start threshold 
is set equal to the available pipe size when the bottleneck buffer 
is empty, which is BWE*RTTmin, the congestion window is set 
equal to the ssthresh and the congestion avoidance phase is 
entered again to gently probe for new available bandwidth. The 



value RTTmin is set as the smallest RTT sample observed over 
the duration of the connection. This setting allows the queue be 
drained after a congestion episode. During the slow-start phase 
we are still probing for the available bandwidth. Therefore the  
BWE we obtain after n duplicate ACKs is used to set the slow 
start threshold. After ssthresh has been set, the congestion 
window is set equal to the slow start threshold only if 
cwin>ssthresh. In other words, during slow start, cwin still 
features an exponential increase as in the current 
implementation of TCP Reno.  
 
3.2 Algorithm after coarse timeout 
expiration 
The pseudocode of the algorithm is 
 
if (coarse timeout expires) 
  ssthresh = (BWE*RTTmin)/seg_size; 
 
  if (ssthresh < 2)  
    ssthresh = 2;  
  endif; 
 
  cwin = 1; 
endif 
 
The rationale of the algorithm is again simple. After a timeout  
cwin and ssthresh are set equal to 1 and BWE, respectively, so 
that the basic Reno behavior is still captured, while a speedy 
recovery is granted by the ssthresh being set to the bandwidth 
estimation at the time of timeout expiration. 
 
3.3 TCP Westwood convergence to fair share 
An important goal of any TCP implementation is for every 
connection to get its “fair share” of the bottleneck. We will use 
an informal argument similar to that used for Reno in [14] to 
show that TCPW achieves the fair share. Consider the case of 
two connections with the same RTTs. Suppose, for the sake of 
example, that the RTT is X packet transmission times, and the 
bottleneck has X buffers. One connection, say A, starts first. Its 
window ”cycles” between X and 2X (as per the TCPW 
algorithm described earlier in this Section), each cycle 
terminating when buffer overflows. Later, connection B starts, 
first in slow start mode, and then in congestion avoidance 
mode. In congestion avoidance, during each cycle the windows 
A and B grow approximately at the same rate, i.e., one segment 
per RTT.  Eventually, the bottleneck buffer overflows, 
terminating the cycle. One can show that the window at 
overflow is: 
 
Wi  = Ri (b/C +RTT), for i = A,B; 
 
where R is the achieved rate (i.e., BWE); b is the bottleneck 
buffer size; and C is the bottleneck trunk capacity.  
 
This is a general property true for all TCP protocols, and in 
particular for TCPW. After overflow, TCPW reduces the 
windows to new values Wi’ as follows: 
 
Wi’= Ri  (RTT) for i = A, B 
 

Thus, the ratios of the windows A and B are preserved after 
overflow. Yet, the ratio WB/WA keeps increasing during  
congestion avoidance. Consequently, the B window and 
throughput ratchet up at each cycle. Equilibrium is reached 
when the two connections have the same windows and the same 
bandwidth fair share. Figure 2 graphically illustrates the 
convergence to the fix point WA=WB.  
 
This informal proof is validated by actual simulation results. It 
can be generalized to many simultaneous connections (all with 
the same RTT). It can also be applied to the case when the 
bottleneck is affected by random errors equally hitting all 
connections.  

Figure 2. Convergence toward fair bandwidth sharing. 
 

4. TCP Westwood Performance, Fairness, 
and Friendliness  

In this Section, we report on the basic performance behavior of 
TCPW, its fairness among a number of TCPW connections 
sharing a bottleneck link, and its friendliness to coexisting 
connections of other TCP variants, such as Reno. 
 
First, the effectiveness of the bandwidth estimation algorithm is 
studied using a single TCP connection and a fluctuating UDP 
traffic rate. TCPW window dynamics (cwin, ssthresh and 
sequence numbers) are then considered. TCPW performance 
behavior is compared to the standard and widely used TCP 
Reno as well as to TCP SACK [16].  
 
All simulations presented in this paper were run using the LBL 
network simulator, 'ns' ver.2 [19]. 
 
New simulation modules for TCP Westwood were written and 
they are available at [20], while existing modules for 
simulations involving TCP Reno and TCP Sack were used. All 
simulated TCP receivers implement delayed-ACKs. Notice that 
this introduces a complication for our bandwidth estimation 
algorithm as delayed ACKs represent noise to be filtered, as 
explained in Section 2.3.  
 
Each scenario, involving different bottleneck link capacity, 
RTT or number of concurrent connections, includes a single-
bottleneck link as is common in the literature. Intermediate 
node buffer capacity is always set equal to the bandwidth-delay 
product for the scenario under study.  The packet size is set to 
400 bytes in all experiments. The ACK arrival pattern is 

zero backlog 

bottleneck overflow 

WA equal bandwidth share 

Connection B Window 

Connection 
A Window 

WB 



repetitive for each RTT in absence of packet losses (errors or 
buffer overflow). Thus, the interval τ  should span one or more 
RTTs. Experimentally, we have observed that performance is 
not very sensitive to the choice of τ  as long as τ >RTT. In our 
experiments, we set τ  equal to 500ms. 
   
4.1 Bandwidth estimation effectiveness 
In this Section, we test the effectiveness of the proposed 
bandwidth estimation algorithm. For this purpose we consider a 
single TCPW connection sharing the bottleneck link with UDP 
connections. Packets are queued and transmitted on the link in 
FCFS order. In addition to demonstrating the accuracy of the 
bandwidth estimation algorithm, this scenario also illustrates 
the capability of a TCP Westwood connection to use the 
bandwidth left over by dynamic UDP flows. The configuration 
simulated here features a 5 Mb/s bottleneck link with a one-way 
propagation delay of 30ms. One TCP connection shares the 
bottleneck link with two ON/OFF UDP connections, and TCP 
and UDP packets are assigned the same priority. Each UDP 
connection transmits at a constant bit rate of 1 Mb/s while ON. 
Both UDP connections start in the OFF state; after 25s, the first 
UDP connection is turned ON, joined by the second one at 50s; 
the second connection follows an OFF-ON-OFF pattern at 
times 75s, 125s and 175s; at time 200s the first UDP connection 
is turned off as well. The UDP connections remain silent until 
the end of the simulation. The TCPW connection sends data 
throughout the simulation. 
 
The scenario above is intended to demonstrate the effectiveness 
of the feedback control used in TCPW when subjected to “step” 
and “impulse” stimuli.  The behavior of the bandwidth 
estimation process is shown in fig. 3.  
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Figure 3. TCPW with concurrent UDP traffic: bandwidth 
estimation  

 
4.2  TCPW fairness 
Fair bandwidth sharing implies that all connections are 
provided with similar opportunity to transfer data. Our 
experiments show that TCPW fairness is at least as good, if not 
better, than that provided by the widely-used TCP Reno. In the 
sample results below we show that two flows with different 
E2E round trip times (RTT) share the bandwidth more 
effectively under TCPW than under TCP Reno. 
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Figure 4. Sequence numbers vs. time for long and 

short RTT connections  without RED 
We ran simulations in which connections were subject to 50ms 
and 200ms RTT, respectively. Figure 4 and Figure 5 show 
sequence number progress for TCPW and Reno connections 
without and with RED, respectively. In all cases the short 
connection progresses faster as expected. We note however that 
TCPW provides better fairness than Reno across different 
propagation times. The reason for the superior fairness 
exhibited by TCPW is that the long connection suffers less 
reduction in cwin and ssthresh. In Reno, cwin reduction is 
independent of RTT. The results in Figure 5 show that both 
protocols benefit from RED, as far as fairness is concerned. 
Remarkably, the improvement in TCPW due to RED was 
higher than the improvement in Reno.  
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Figure 5. Sequence numbers vs. time for long and 

short RTT connections with RED  
 
4.3 TCPW friendliness 
Friendliness is another important property of a TCP protocol. 
TCPW must be “friendly” to other TCP variants. That is, 
TCPW connections must be able to coexist with connections 
from TCP variants while providing opportunities for all 
connections to progress satisfactorily. At least, TCPW 
connections should not result in starvation of connections 
running other TCP variants. Better yet, the bandwidth share of 
TCPW connections should be equal to their fair share.  
 
We ran simulation experiments with the following parameters: 
2-Mbps bottleneck link, 20 flows total, all flows with 100ms 
RTT. With all 20 connections running TCPW, the average 
throughput per connection was 0.0994 Mbps. All 20 Reno 



connections resulted in an average throughput  of 0.0992 Mbps. 
As predicted, we got the same results for the two schemes. We 
then ran 10 Reno with 10 Westwood connections sharing the 
same 2Mbps bottleneck link over a path of 100ms RTT. The 
average throughput for a TCPW connection went up to 0.1078, 
and that of a Reno connection went down to 0.0913. This 
shows that TCPW behavior departs from “fair share” by 16% 
(TCPW gains 8% and TCP Reno loses 8%). This unfairness is 
rather moderate and it can be tolerated as it allows for 
coexistence with Reno.  
 
To probe the friendliness issue further, we also carried out 
actual measurements using our TCPW  Linux implementation 
in our lab. Figure 6  shows the topology of our lab test bed. The 
link emulator is used to vary the link propagation time and error 
characteristics.   
 
 

 
Figure 6. Experimental test bed layout 
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Figure 7. Average throughput vs. No. of Reno connections 

over good and lossy link (5 connections total) 
 

We measured the throughput for a total of 5 connections with a 
variable Reno/ TCPW mix. Then, to evaluate the friendliness of 
TCPW under stress, we introduce a relatively high error rate on 
the bottleneck link, namely 1% packet loss (See Figure 7). This 
error rate is actually appropriate for wireless links as we shall 
discuss later. Note that TCP West shines in presence of line 
errors, so, friendliness in the error situation is even more 
difficult to establish than in error free operation. 
 
The RTT was 100ms. Error rates and propagation delays are 
introduced in our test bed via a link/network emulator. Figure 7 
shows the average throughput per connection for TCPW and 
for Reno. The lower average throughput line is that of the Reno 
connections. The horizontal axis represent the number of Reno 
connections in the mix. For example, at the point marked 3 on 
the horizontal line, the measurement experiment includes 3 
Reno connections and 2 TCPW connections The results in 
Figure 7 illustrate two important points. First, TCPW has a 
significant edge in a high-error-rate environment: 5 TCPW get 
10% more throughput than 5 TCP Reno. We will press more on 
this later. Secondly, friendliness is preserved.  Even though 
TCPW has an advantage over Reno in error-prone 
environments, Reno connections were not starved.   In fact, the 
introduction of TCPW connections into the mix reduces the 
average throughput of a Reno connection only by a minimal 
amount. Thus, for practical purposes, we can claim that TCPW 
is friendly.  
 
5. TCPW Performance In Mixed (Wired and 

Wireless) Networks 
TCPW is being proposed in this paper as an end-to-end solution 
to error and congestion control in mixed wired and wireless 
networks. In view of this claim, a number of different scenarios 
are studied below to show the benefits of using TCPW in such 
wired/wireless environments. Independent and correlated loss 
models are used. Ground radio as well as satellite scenarios are 
developed and studied. 
 
5.1 Independent loss model in ground radio 

environment 
 

 
Figure 8. A simple Simulation Topology 

 
Figure 8 shows a topology of a mixed network with a wired 
portion including a 10-Mbps link between a source node and a 
base station. The propagation time over the wired link is 
initially assumed to be 45ms. Later, the propagation time is 
varied from 0 to 250ms to represent a variety of wired network 
environments ranging from campus to intercontinental 
connections.  
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Figure 9. Throughput vs. error rate of the wireless link 
  
The wireless portion of the network is a very short 2-Mbps 
wireless link with a propagation time of 0.01ms. The wireless 
link is assumed to connect the base station to a destination 
mobile terminal. Errors are assumed to occur in both directions 
of the wireless link.  
 
We compare the throughput of TCPW to that of Reno and 
SACK assuming independent  (Bernoulli) errors ranging from 0 
to 5% packet loss probability. The error model assumed here is 
equivalent to the “exponential error” model in which the time 
between successive errors is exponentially distributed [3]. The 
range of error rates assumed here is also similar to the range 
used in [3]. The results in Figure 9 show that TCPW gains up to 
394 % over Reno or SACK. This gain occurs at a realistic 
packet error probability of 1%. 
    
To assess TCPW throughput gain and its relation to the E2E 
propagation time, we ran simulations with the wired portion 
propagation time varying from 0 to 250ms. The results in 
Figure 10 show a significant gain for TCPW of up to 567%, at a 
propagation time of 100ms. When the propagation time is small 
(say, less than 5ms), all protocols are equally effective. This is 
because a small window is adequate and window optimization 
is not an issue. TCPW reaches maximum improvement over 
Reno and Sack as the propagation time increases to about 
100ms. After that, in this experiment, the gain starts to decrease 
as the feedback information used to estimate the available 
bandwidth arrives too late to be of significant help to TCPW. 
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Figure 10. Throughput vs. one-way propagation delay 
 

Simulation results in Figure 11 show that TCPW gains also 
increase significantly as the bottleneck link transmission speed 
increases (again, because what matters is the window size 
determined by the bandwidth-delay product). Thus, TCPW is 
more effective than TCP Reno in utilizing the Gbps bandwidth 
provided by new-generation, high-speed networks. Figure 11 
shows that the improvement obtained via TCPW increases to 
approximately 550% when the wireless link speed reaches 8 
Mbps. The error model is  still Bernoulli with parameter 0.5%, 
and the E2E propagation time is 45ms.  
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Figure 11 Throughput vs. link capacity  
 
Window dynamics of TCPW and of TCP Reno are presented in 
Figure 12 and Figure 13 below. The graphs show the improved 
window dynamics in TCPW. The cwin and ssthresh values are 
consistently higher than the corresponding values in Reno, thus 
yielding higher throughput . 
 
Next we compare TCPW to Snoop, the leading  local strategy 
shown to provide the  biggest improvement over TCP Reno [4]. 
Published results show that Snoop provides approximately a 
400% improvement over an E2E approach based on TCP Reno 
when the error rate is 1 bit in 64 KBytes and the round trip 
propagation time is 135ms. Our simulations with similar 
parameter values show that TCPW provides a 382% 
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Figure12. TCP Westwood over lossy link—cwin and 
ssthresh 
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Figure 13. TCP Reno over lossy link—cwin and ssthresh 
 
improvement over Reno. This shows that TCPW and Snoop 
gains are remarkably (and enticingly) close. We plan to probe 
further the issue of effectiveness of local versus E2E error 
recovery via simulation and measurements. From the 
qualitative and protocol implementation standpoint, however, 
we note that TCPW is completely end-to-end, and does not 
require any support from network or link layers. It does not 
have the scalability problems that Snoop may encounter as the 
number of mobile terminals increase. Further, the effectiveness 
of Snoop in wireless subnets including multiple base stations 
and handoffs is not clear.  
 
Explicit Loss Notification (ELN) is an E2E scheme that is 
introduced and assessed in [3]. Basically, the method provides 
explicit notification from TCP receiver to TCP sender that a 
loss due to a link error has occurred. The lost packet is also 
identified to the Sender TCP entity. Using the same parameter 
values above (1 bit in 64 Kbytes error rate, and 135ms 
propagation time), ELN is shown to provide a gain of 
approximately 200% over Reno. In comparison, TCPW 
provides 382%, closer to Snoop performance. Further, ELN 
assumes that the destinations can detect errors on a link and 
identify the packet and its TCP source. These assumptions are 
not likely to be uniformly satisfied for various error causes and 
various link technologies, thus the limitation in versatility of 
ELN in addition to its limited gain over Reno. 
 
We compared, via simulation, TCPW to BA-TCP [10], an 
alternative strategy where the routers explicitly measure and 
relay the bandwidth available for each  connection back to the 
TCP sender. At 40ms round trip time, and 1 bit in 100KB error 
rate, BA-TCP's improvement over Reno is 202%. For TCP 
Westwood, the throughput improvement at the same parameter 
values is 161%. This is quite remarkable considering that BA-
TCP measures the bandwidth actually available for a 
connection at the bottleneck router, while TCPW works with no 
support from routers to estimate the available bandwidth at the 
bottleneck. Note that the router functionalities required by BA-
TCP are not available in today’s routers. 
 
5.2 Burst error models in a ground radio 

environment 
To study TCPW performance with correlated errors, we use the 
2-state Markov models following [1][5]. In such models, burst 
errors occur at a high rate due to a variety of conditions 

associated mostly with terminal mobility. Such conditions 
include variable fading, blackouts due to shadowing, and the 
like. Figure 14 below depicts the 2-state Markov model. The 
wireless link is assumed to be in one of two states: Good or 
Bad. In the Good state, a bit (or packet) error Bernoulli model 
is assumed. The time intervals between bit errors is thus 
exponentially distributed (memoryless channel errors). In 
addition, a link is assumed to stay in the Good state a time 
interval that is exponentially distributed with parameter λgb .  
The time spent in the Bad state is also exponentially distributed 
but with parameter λbg. In the Bad state we assume that errors 
are still Bernoulli, however, the rates of errors in the Bad state 
are much higher. For the simulation experiments below we vary 
the error rate in the bad state depending on the specific link 
conditions we want to study. To represent fading conditions, 
the bit error rate is assumed to range from 0 to 30%. For 
blackouts, the error rate is 100%.   
 
 
 
 
 
 
 
 
 

Figure 14. 2-state Markov  Model for Burst Error 
Characterization 

 Simulation results using the 2-state Markov models show that 
TCPW improves throughput for links with fading and blackouts 
as discussed below. 
 
(a) Fading: 
Let the Bad state represent fading conditions, and let the mean 
duration of Good and Bad states be 8 and 4 sec respectively. 
The error rate in the Good state is assumed to be 0.001% packet 
loss, and the error rate in the Bad state is varied from 0 to 30% 
packet loss rate. The results in Figure 15 show the improvement 
obtained with TCPW over Reno or SACK. TCPW increases 
throughput by up to 300%. This is achieved when the error rate 
in the Bad state is 5 %. When the error rate is higher, all 
protocols perform poorly. 
 
When the error rate is less than 5%, TCPW provides about 
150% improvement. We also varied the link speed to determine 
its impact on the protocols performance.  
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Figure 15. Throughput vs. error rate of the bad state 
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Figure. 16. Throughput vs. link capacity in 2-state error 
model 

Figure 16 shows that TCPW improvement increases as the 
wireless link (bottleneck link in this case) increases (as 
expected, since a similar trend was observed also in wired 
links). At 10 Mbps link speed, a 400% throughput improvement 
is achieved at the same error rate in Bad state of 5% packet 
loss. 
 
(b) Blackouts: 
Let us now assume that the Bad state represents a blackout, 
where a base station becomes temporarily not visible to a 
terminal due to mobility. The mean duration for the Good state 
is 4 sec; the mean duration of the Bad state varies between 0 
and 0.5 sec, Figure 17 shows the throughput improvement 
obtained by TCPW to be 167 % over Reno and SACK when the 
mean blackout duration is 0.1 sec. For longer blackouts, TCP 
timeouts occur and all protocols are equally affected. 
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Figure 17 Throughput vs. average duration of blackout 
 
5.3 LEO Satellite Model 
Another environment where TCPW is likely to be valuable is 
the LEO satellite system. LEO Satellites present an 
environment with varying link quality and relatively long 
propagation delay. Also, in the future, higher transmission 
speeds are expected. That is where TCPW would be most 
beneficial.  
 
We considered for this study a scenario where a single hop, up 
to the satellite and down to an earth terminal, connects a 

terminal to a gateway and from there to the terrestrial network. 
One way (e.g. terminal to gateway) propagation time is 
assumed to be 100ms. The error rate is assumed 0.1% in normal 
operating conditions. Occasionally, if the LEO system supports 
satellite diversity, a handoff to a different LEO satellite 
(different orbit) becomes necessary to overcome the blocking 
due to buildings, thick foliage etc. During handoff, we assume 
all packets are lost. In our model, the handoff from one satellite 
to another needs 100ms to complete, and the period between 
handoffs is 4s, say. Figure 18 below shows the major 
improvements of TCPW over Reno and SACK, especially at 
high speeds. 
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Figure 18. Throughput vs. link capacity of the Satellite link 
 
6. Conclusions and Future Research 
In this paper we have proposed a new version of the TCP 
protocol, TCP Westwood, (TCPW for short) aimed at 
improving performance under random or sporadic losses. 
TCPW has been tested through simulation, showing 
considerable throughput gains in almost all wireless scenarios. 
 
In retrospect, the new scheme can be viewed as one more step 
in the TCP evolution. TCP Tahoe resets cwin to one after a loss. 
TCP Reno halves cwin after three duplicate ACKs. TCP 
Westwood introduces a "faster" recovery mechanism to avoid 
over-shrinking cwin after three duplicate ACKs. It does so by 
taking into account the end-to-end estimation of the bandwidth 
available to TCP. The use of bandwidth estimation feedback to 
control the congestion window has an effect that goes beyond 
faster recovery. Namely, TCP window congestion control is 
based not solely on packet loss (which itself is an ambiguous 
congestion indicator in presence of wireless links), but also on 
the bandwidth estimate at the time of loss. The benefits of using 
bandwidth estimation ( in addition to packet loss) have been 
amply demonstrated in a very broad range of wireless 
scenarios. 
 
The issue of friendliness, raised by previous reviewers of this 
work, has been addressed. A qualitative proof of fair behavior 
under appropriate conditions has been provided. “Unfriendly” 
trends due to TCPW “aggressiveness” have been detected in 
our experiments, but were shown to be contained and never 
severe enough to lead to starvation.  
 
The code modifications required to implement TCP Westwood 
are comparable to the ones implemented in the transition from 
TCP Tahoe to TCP Reno. As in the Tahoe to Reno transition, a 



major advantage of the TCP Westwood modification is that it 
affects only the source TCP (as opposed to other variants such 
as TCP SACK that require also destination modifications). This 
allows a TCP Westwood source to  interwork with  arbitray  
destinations in the Internet. 
 
Work is in progress in many directions. Some of these 
directions were indicated by the anonymous referees – we 
thank them for their thorough reviews and valuable comments.  
We are planning to include in TCPW the NewReno feature that 
allows efficient recovery from multiple losses in the same 
window. We are aware that in some cases the bottleneck link is 
in the backward path, from receiver to sender. In such cases, the 
bottleneck must be ”fairly” shared among Data Packets (in 
some connections) and ACKs (in some other connections). We 
plan to attack this problem by defining first a suitable measure 
of “fairness” between Data and ACK streams. If fairness is 
defined as equal throughput for all connections regardless 
whether Data or ACK bound, and Data packet size is the same 
for all connections, one can show that TCPW provides a fair 
solution – at equilibrium all connections measure the same 
BWE. The comparison of TCPW with link level techniques 
such as Snoop deserves further study. It is clear that link level 
recovery is in general much more powerful than end to end 
recovery since it isolates and corrects the loss “in loco”. For 
instance, suppose that the bottleneck is in the wired network 
and one of the connections sharing the bottleneck goes over a 
wireless, lossy link. With E2E recovery (TCPW and TCP Reno 
alike) the wireless connection is heavily penalized with respect 
to the others. With link layer recovery (eg, Snoop) fair sharing 
is enforced. Next, TCPW performs poorly when random packet 
loss rate exceeds a few percent. Snoop, on the other hand, is 
quite robust to high error rates. We are now investigating 
TCPW enhancements that will in part correct these 
deficiencies.. We plan to further refine our bandwidth 
estimation and filtering method, in order to improve TCPW 
“friendliness”. Finally,  we intend to pursue  the development 
of control theoretical models that will enable us to study the 
stability of TCPW as a function of the various systems 
parameters. 
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