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Abstract Backstepping design is proposed to control a 
Lorenz chaotic system. A major advantage of this method is that 
it has the flexibility to build the control law by avoiding 
cancellations of useful nonlinearities. Consequently, the goals of 
stabilization of chaotic motion and tracking of a reference signal 
are achieved with a reduced control effort. A comparison with the 
differential geometric method highlights the advantages of the 
proposed approach. 

1. Introduction 

Dynamic systems described by nonlinear differential 
equations can be strongly sensitive to initial conditions. This 
phenomenon is known as deterministic chaos just to mean that, 
even if the system mathematical description is deterministic, its 
behavior proves to be unpredictable. 

Many mechanical, electrical or chemical systems can exhibit 
chaotic dynamics. Since chaos is unpredictable and may lead to 
vibrations and fatigue failures in mechanical systems, its 
suppression is generally advantageous. Consequently, analysis 
and control of chaotic systems have received ever increasing 
attention in recent years [l]-[I 11. The pioneer work by Ott, 
Grebogi, and York (OGY method) [3], proposed to make a small 
time-dependent perturbation on one accessible parameter of the 
system to set the chaotic motion to one of the unstable periodic 
orbit embedded in a strange attractor. A drawback is that steady 
state solutions represent the most practical operation mode in 
many chaotic systems such as electronic oscillators [2] or laser 
systems [4]. Therefore, it is important to develop control 
techniques to drive a strange attractor not only to a periodic orbit 
but also to a steady state. In [5] a periodical external force is 
proposed to drive chaotic motion to a periodic orbit but not to a 
steady state [6]. Many feedback approaches, like conventional 
linear feedback in [7] and [8], have been proposed to drive the 
chaotic motion to a steady state. Regarding nonlinear control, in 
[9] a variable structure control strategy is proposed to stabilize 
Lorenz chaos. 

A more interesting method, based on the differential 
geometric approach, is proposed in [6]. Since the dynamic of the 
original system is transformed into a linear one, linear control 
techniques can be used to drive the motion to the desired 
trajectory. However, this method has two drawbacks: 1) perfect 
linearization cannot be obtained because the nonlinear feedback 
depends on the nonlinear model of the system that necessarily 
contains uncertainty; 2) the resulting control law is somewhat 
complex and requires too much control effort because it pursues 
linearization of the system rather than stabilization or tracking. 

In this paper, backstepping design [12] is proposed as a 
technique for controlling Lorenz chaos. Based on recursive 
application of Lyapunov’s direct method, backstepping enables to 
drive the chaotic motion towards any desired trajectory. A major 
advantage of the proposed method is that it has the flexibility to 
choose the control law so that both the goals of stabilization and 
tracking are achieved with reduced control effort. 

Finally, simulation results show that backstepping design 
requires less control effort to achieve stabilization and tracking in 
comparison with the differential geometric approach proposed in 

PI. 

2. Backstepping Design for Controlling Chaos 

Given a dynamic system described by nonlinear differential 

equations of the form i = f (x, u) , where x E St”, a chaotic 

solution can exist for initial conditions x(O) belonging to some set 

X, c %’ and for control input u B 9l set to zero. From control 

theory perspective, controlling chaotic dynamics consists of 
finding a control law u=u(x) such that a chaotic solution x(t) is 
reduced to the desired trajectory. Backstepping offers a recursive 
design method for building both feedback control laws and 
associated Lyapunov functions. For details on backstepping 
design see [12]. 

2.1 Stabilization of Lorenz System 

Lorenz system is a benchmark in studying chaotic phenomena 
[6], [9], [13]. It basically models convection process. It is 
described by the following differential equations [6] 

x=-lOx+lOy 

j=-x2-y (1) 
z=xy-z-R 

where R=R,,+u is the Rayleigh number, RO is the operation 
value, and u is the control parameter. If RO =28, the uncontrolled 
system (i.e. u=O) is chaotic and there are three unstable 

equilibrium points: (Cc&,-1) 9 (OA-Ro), and 

(-Co,-Q.-l) where Co =,/F. It is worth noting that, 

when the set point is the state (Co,&-1) , the OGY method is 

not applicable (61. By translating the origin of system (1) in the 

set point (Co,Co,-I) , the system equations become 

i, =-10x* + 10x2 

i2 =x, -q -(fi+x~)x3 (2) 

i3=J2?(x* +x2)-x3 +xlx2-u 

The objective is to find a control law u(x) for stabilizing the 
state of system (2) in the origin. Since system (2) belongs to the 
class of strict-feedback systems, backstepping design can be 
applied [ 121. It gives the control law 

u=J27x,--- 
I lx, 1 lfi(- 10x, + 10x2) 

fi+xt (J?T+xJ 
(3) 

2.3 Tracking of Lorenz System 

The aim of this subsection is to find a control law for the 
input u such that a defined scalar output tracks any desired 
trajectory r(t), including stable or unstable limit cycles as well as 
chaotic trajectories. By assuming the output y=xZ, let z2 be the 

deviation of x2 from the target, i.e. z2=xz-r(t). Given V2 = iz2’ , 

the time derivative Q1 becomes negative definite by choosing the 

virtual control 
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Again, by choosing V, = V, + iq*, where z3 =x3 - a2 is 

the deviation of the virtual control from the stabilizing tinction, 

the time derivative e3 is made negative definite by the control 

(4) 

+rG;I +fi)+JZx, 

which assures that x2 tracks the reference signal r(t). 

3. Backstepping Design versus Feedback Linearization 

In this section the backstepping design is compared with the 
differential geometric method proposed in [6] via computer 
simulations. The results concerning stabilization via backstepping 
design and feedback linearization are reported in Fig. 1, whereas 
the results concerning tracking are reported in Fig. 2. The control 
action u is switched on at t=20. The figures show that 
backstepping design requires less control effort than differential 
geometric method. The reason is that backstepping pursues the 
goals of stabilization and tracking rather than that of 
linearization. 

4. Conclusion 

Backstepping design has been applied to a Lorenz system for 
both stabilization and tracking. The advantages of the proposed 
approach can be summarized as follows: I) it is a systematic 
procedure to design control laws for chaotic systems; 2) it 
requires less control effort in comparison with the differential 
geometric method. 
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Stabilization: (a) time waveform of control effort u using 
backstepping and (c) using feedback linearization; (b) 
corresponding time waveforms of x1, xz and x3 using 
backstepping and (d) using feedback linearization. 
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Fig. 2: 
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Tracking of sin(t): (a) time waveform of control effort u 
using backstepping and (c) using feedback linearization; 
(b) corresponding time waveform of x2 using 
backstepping and (d) using feedback linearization. 


