
Synchronizing Live Video Streaming Players Via Consensus

Gioacchino Manfredi, Luca De Cicco, Saverio Mascolo

Abstract— Video streaming is the primary source of the
global Internet traffic. Social media applications allow users
to experience live streaming events together, even though not
being in the same physical place. The current online video
delivery architecture cannot ensure a synchronized video play-
back among geographically distributed users. Unsynchronized
playback can become evident and negatively impact the users’
feelings of togetherness. In this paper, we show that the well-
known consensus problem of simple integrators with saturated
inputs is an appropriate mathematical framework to design a
distributed playback synchronization mechanism. Furthermore,
we propose a leader-following approach to ensure synchroniza-
tion among users. Simulations on different network topologies
confirm that the proposed approach is effective at enforcing
asymptotic synchronization without having detrimental effects
on the users’ perceived quality.

I. INTRODUCTION AND BACKGROUND

Today, users are increasingly adopting video streaming
services instead of classical TV broadcast channels to con-
sume a broad spectrum of media going from on-demand
content (e.g., movies, TV series) to live events (e.g., sport,
news).

However, media delivery over the Internet is affected by
two main issues that impair the users’ perceived quality:
1) video playback might stall or video quality might degrade
impacting service smoothness [1]; 2) in live events, geo-
graphically distributed users might watch the same content
but with different playback times having detrimental effects
on the service togetherness, i.e., the level of satisfaction that
users perceive when feeling that the service is experienced
together with a number of users. When the streams are not
synchronised, some clients may watch a certain event (e.g.
a goal in a football match) before the others, thus negatively
impacting users’ feelings of togetherness.

In order to overcome the first issue, the video content
bitrate must be made adaptive. To this end, the standard
currently employed to stream media content, i.e., the MPEG-
Dynamic Adaptive Streaming over HTTP (MPEG-DASH or
DASH) [2] requires that each video is compressed as follows.
The video is firstly divided into segments or chunks of fixed
duration τ (typically 1 to 10 seconds) and then each segment
is compressed to originate a number of levels, characterized
by different encoding bitrates and video resolutions. This
way, the clients can dynamically choose the suitable level
to fetch according to a controller denoted as the Adaptive
BitRate (ABR) algorithm. Its goal is to maximize the overall

Gioacchino Manfredi, Luca De Cicco, and Saverio Mas-
colo are with the Dipartimento di Ingegneria Elettrica e
dell’Informazione at Politecnico di Bari, Via Orabona 4, 70125,
Bari, Italy Emails: gioacchino.manfredi@poliba.it,
luca.decicco@poliba.it, mascolo@poliba.it

perceived quality given the Internet available bandwidth
while avoiding rebuffering events. The design of ABR con-
trol algorithms has been extensively studied in the literature
with contributions also set in the control community [3], [4].
On the other hand, the issue of unsynchronized video streams
affecting service togetherness is still unsolved.

To the best of our knowledge, this research issue has never
been addressed by the control system community. In fact,
the published literature is all set in the research fields of
multimedia and computer networks and offers few works
mostly using centralized approaches [5], [6]. The drawback
of such solutions is that they do not scale with the number of
users. It is worth mentioning that the only works proposing a
decentralized approach resort to heuristics that do not allow
a rigorous analysis of system properties [7], [8].

In this paper, we propose a fully distributed approach for
video playout synchronization in which each client in the
network can exchange its own asynchrony value only with
that of some neighbouring clients. This work makes two
key contributions. First, it provides a mathematical model
of the playback time of an event that clearly explains the
causes for synchronization issues (Section II). Second, it
shows that the problem of synchronizing video players can
be expressed as a consensus problem involving integrators
with saturated control inputs (Section III). As a matter of
fact, the application of consensus theory to the field of video
streaming is not new in the literature, e.g., in [9] consensus
is leveraged to provide video quality fairness.

In our work, the synchronization algorithm is decoupled
from the ABR algorithm, which is left unchanged. The
control input leveraged to synchronize clients is the playback
rate, an approach denoted as Adaptive Media Playout (AMP).
In practice, the playback rate, i.e. the speed of reproduction
of the video, can be slightly adjusted to control the playback
time. Several studies on the user’s perceived quality, or
Quality of Experience (QoE), have shown that the playback
rate can be increased/decreased by only a small amount to
prevent the QoE from being negatively impacted [10], [11].
Thus, our proposed approach, with the playback rate bounded
in a given interval, allows asymptotic convergence of the
clients to the same playback time (Section IV).

II. PLAYBACK TIME MODEL

This section is organized as follows. First, a model of
the playback time is provided in Section II-A. Based on this
model, in Section II-B we show the causes of synchronization
issues among users. Finally, in Section II-C we present
a model of the AMP approach that can be leveraged to
synchronize players.

2021 European Control Conference (ECC)
June 29 - July 2, 2021. Rotterdam, Netherlands

978-94-6384-236-5 ©2021 EUCA 1062

Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:29:52 UTC from IEEE Xplore. Restrictions apply.

A. Video playback time model

This section presents a model of the playback time of a
user watching a live event that starts at time t = 0. Notice
that the live event time coincides with the real time t, thus
we will use the term time end event time interchangeably.

DASH-compliant live streaming systems (e.g., YouTube,
Facebook, etc.) produce live videos. A camera captures a live
scene that is compressed in real-time by an encoder. Each τ
seconds this element produces video segments with the same
video content encoded at different bitrate levels li belonging
to a discrete set L = {l1, . . . , lM} (li < li+1). A circular
buffer accommodates the k segments most recently produced
by the encoder for each of the levels li ∈ L . Notice that
the client can only access the segments stored in the circular
buffer. Thus, at any given time t, a user can access segments
containing video content representing the scene captured in a
time window W (t) defined as follows. We denote with s(t)
the segment index that contains the event time t:

s(t) =

⌊
t

τ

⌋
(1)

where b·c is the floor operator that maps a real number x
to the greatest natural number less than x. Notice that the
segment s(t) contains the event scene belonging to the time
interval [s(t)τ, (s(t) + 1)τ [. Equipped with this notation, it
is easy to see that the window W (t) representing the event
time currently stored in the circular buffer is:

W (t) = [s(t)τ − kτ, s(t)τ [(2)

When a user joins a live event at time tJ , it immediately
starts downloading the oldest segment available in the circu-
lar buffer, i.e. the one with index s(tJ) − k. The retrieved
segments are temporarily stored in the client’s playout buffer
whose level, measured in seconds, is denoted with q(t). The
ABR control algorithm decides the video level l(t) ∈ L to
be downloaded for each segment. Such algorithms typically
wait for the playout buffer level q(t) to reach a certain value
qL that is considered enough to mitigate the rebuffering
events occurring when the buffer gets completely depleted
(q(t) = 0). The playout buffer level q(t) can be modeled as
an integrator [1]:

q̇(t) = f(t)− p(t) (3)

where f(t) is the fill rate, i.e. the rate of seconds of video
received and stored in the playout buffer and p(t) is the
playback rate, i.e. the rate of seconds of video drained by
the playout buffer and fed to the decoder. In [1] we show
that f(t) = r(t)/l(t), where r(t) is the download rate that
depends on the time-varying network bandwidth measured
in bytes/s.

Under normal operation, when the video is playing the
playback rate p(t) is equal to 1. This indicates that the video
playback is not slowed down nor sped up. Of course, when
the player is in pause the playback rate is 0. Thus, under
normal conditions it holds:

0 t
(j)
J

t
(j)
Bt

(i)
B

t
(i)
J t

(i)
P t

(j)
P

P
(i)
0

P
(j)
0

τ

2τ

3τ

4τ

5τ

6τ

7τ

W
(t(

i) J

)

t

play time

P j
(t
)

W
(t(

j
)

J

)

P i
(t
)

ev
en

t tim
e t

Fig. 1. Playback time dynamics of two users i and j joining at different
time instants

p(t) =

{
1 playing
0 paused

(4)

We are now ready to derive the model of the playback time
P (t). When the user joins the live event at time t = tJ , it
immediately starts downloading the segment with playback
time:

P0 = s(tJ)τ − kτ (5)

which corresponds to the first segment stored in the pro-
ducer’s circular buffer at time tJ . Recall that the player is
paused (p(t) = 0) until the queue level q(t) surpasses qL.
The time tB needed to fill the playout buffer to reach qL
can be found by integrating (3) and imposing the constraint
q(tB) = qL. Thus, tB depends both on the download rate
r(t), which can be considered as a disturbance, and on l(t)
that is the output of the ABR control algorithm.

The player starts reproducing the video at time tP = tJ +
tB . By definition, for t > tP , the playback time dynamics is
given by:

Ṗ (t) = p(t) (6)

with initial condition P (tP) = P0, which leads to:

P (t) = P0 + t− tP (7)

B. The synchronization issue

To shed more light on the causes of synchronization issues,
refer to Figure 1 that depicts the play time of two users,
denoted with i and j, that are interested in watching the
same live streaming event. The figure shows the case of a
live video streaming system using a circular buffer containing
the two most recently produced segments, i.e., k = 2. The
user i is the first to join the event at time t(i)J , after which the
ABR algorithm immediately starts to download and store in
the playout buffer the video chunks contained in the circular
buffer identified by the time window W (t

(i)
J) (blue shaded

area in the figure). When the buffer length reaches qL after
t
(i)
B seconds, the playback on the user’s device starts, i.e.

1063

Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:29:52 UTC from IEEE Xplore. Restrictions apply.

p(t) = 1, t ≥ t
(i)
P where t

(i)
P = t

(i)
J + t

(i)
B . Notice that

the playback starts with a play time P (i)
0 , as defined in (5),

which represents the play time of the video at the beginning
of the first chunk stored in the buffer, i.e. the beginning of
the window W (t

(i)
J). The user j joins the same live event

at time t
(j)
J after the user i. In the same way, the ABR

algorithm fetches the video chunks identified by the time
window W (t

(j)
J) (red shaded area in the figure) and fills

the playout buffer until it reaches the minimum level qL,
which is needed to begin the playback on the user’s device1.
However, the time t

(j)
B needed to complete this operation

is different in general from t
(i)
B . Therefore, the playback at

user j will start at time t(j)P = t
(j)
J + t

(j)
B from a play time

P
(j)
0 . Finally, the playback time of user i can be denoted as
Pi(t) = P

(i)
0 + t− t(i)P while the playback time of user j is

Pj(t) = P
(j)
0 + t − t(i)P . Hence, the asynchrony of the two

users is

Pi(t)−Pj(t) = [(P
(i)
0 −t

(i)
J)−(P

(j)
0 −t

(j)
J)]+(t

(j)
B −t

(i)
B) (8)

where P
(i)
0 − t

(i)
J represents the distance of t(i)J from the

play time P
(i)
0 of the video at the beginning of the first

chunk stored in the buffer. The same explanation can be
given to P

(j)
0 − t(j)J for user j. As a consequence, if these

two distances are equal as well as the buffering times, then
Pi(t) − Pj(t) = 0 and the two users will be synchronized.
Therefore, it is immediate to deduce that the asynchrony
between two users depends on their join and buffering times.

C. The Adaptive Media Playout model

In this section, we present the AMP approach, which
consists of allowing the playback rate to be slightly varied
around the nominal value 1, i.e. the playback could be
slightly slowed down or sped up of a term u(t). Notice that
u(t) must be small enough to be barely noticeable by the
user so that the user’s QoE is not affected [10], [11]. To this
end, we redefine the playback rate as follows:

pr(t) = p(t)(1 + u(t)) (9)

where u(t) ∈ [−δ, δ], with δ small enough, and p(t) is the
playback rate (4). Thus, the playback time now becomes:

P (t) = P0 +

∫ t

tP

p(ξ)(1 + u(ξ))dξ ∀ t ≥ tP (10)

Suppose N clients are watching the same live streaming
event and assume none of them is experiencing a rebuffering
event2 (i.e., p(t) = 1 ∀ t ≥ tP). Then, for each client i and
∀ t ≥ t(i)P , the playing time is

Pi(t) = P
(i)
0 +

∫ t

t
(i)
P

(1 + ui(ξ))dξ (11)

1Notice that, in general, the value of qL might be different for the two
users.

2Notice that this is a well-posed and realistic assumption since, as already
mentioned, ABR algorithms are specifically designed to avoid such events.

The playback rate variations ui(t), i = 1, ..., N , are the con-
trol variables on which we will act to achieve synchronization
among users. This goal is attained when Pi(t) → Pj(t)
∀ i, j = 1, ..., N asymptotically.

III. THE PROPOSED SYNCHRONIZATION APPROACH

Before presenting our solution, let us start by describing
its design requirements: (R1) the system must be horizontally
scalable, i.e., it could be used for large events; (R2) it has
to be implementable with technologies already available and
used by the media distribution industry. To meet the design
criteria (R1) a decentralized control approach must be used.
The requirement (R2) can be met as follows: to implement
synchronization messages to be exchanged directly among
users, without the need of a central server, the WebRTC open
standard can be used.

Figure 2 depicts the architecture of the proposed approach
for playback time synchronization. In particular, the ABR
algorithm running at the i-th client, on the basis of some
information such as, e.g., the estimated available bandwidth
and the playout buffer level qi(t), dynamically selects the
level li(t) and requests it to the video producer server.
Therefore, the server delivers the video segments encoded
at the level selected by the ABR component. Once these
segments reach the client, they are stored in the playout
buffer waiting to be played. The synchronization controller,
the focus of this work, decides the most suitable value of
the playback rate pr,i(t) at which the video has to be played
at the client’s screen. Finally, the decoder decompresses the
video frames drained form the playout buffer and renders
them on the client’s screen at the playback rate pr,i(t)
imposed by the synchronization controller. Before describing
the proposed approach, let us introduce the following non
restrictive assumption:
Assumption 1. Once each user i = 1, . . . , N starts the
playback of the live streaming content, no rebuffering event
occurs, which implies (i) pi(t) 6= 0 ∀ t ≥ t

(i)
P and (ii) the

ABR algorithm is able to avoid playout buffer depletion, i.e.
qi(t) ≥ 0,∀ t ≥ t(i)P .

The starting point of the proposed approach is to derive
the dynamic model of the playing time evolution from (11).
Let us define the initial delay of the i-th user as T0i = P

(i)
0 −

t
(i)
P < 0. The synchronization algorithm starts at time t = ts

when the N users attending the event have started the video
playback, i.e. pi(t) = 1 ∀ t > ts,∀i ∈ {1, . . . , N}. Notice
that for t < ts the synchronization algorithm is not active,
thus it turns out that ui(t) = 0,∀ i ∈ {1, . . . , N}. As a
consequence, the playback time can be obtained as follows:

Pi(t) = T0i + t+

∫ t

t
(i)
P

ui(ξ)dξ = T0i + t+

∫ t

ts

ui(ξ)dξ (12)

∀ t ≥ ts, where the last equality comes from the fact that
ui(t) = 0 for t(i)P ≤ t ≤ ts. Hence, the dynamical model is

Ṗi(t) = 1 + ui(t) (13)

1064

Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:29:52 UTC from IEEE Xplore. Restrictions apply.

G

feedback

qi(t)

Decoder

pr,i(t)

other
Internet

ABR

Video
producer

Pi(t)

Synchronization
Controller

li(t)

Pi(t) to Ni

Pj(t) from Ni

Fig. 2. The proposed synchronization control architecture

From the previous equation it is clear that the control
variable on which the controller can act to address the
problem is ui(t), ∀ t ≥ ts. In order to obtain a set of
integrators, we need to perform a change of coordinates: let
us define xi(t) = Pi(t)− t, thus ẋi(t) = Ṗi(t)− 1 = ui(t),
∀ t ≥ ts. As a consequence, controlling the models of all
the clients is equivalent to controlling a set of integrators as
defined in the following:

Ṗ1(t) = 1 + u1(t)
...
ṖN (t) = 1 + uN (t)

≡

ẋ1(t) = u1(t)
...
ẋN (t) = uN (t)

(14)

Notice that xi(t) is the temporal delay of user i with re-
spect to the current playout time transmitted by the provider.

In order to model the proposed approach as a consensus
problem, let us define a directed graph (or digraph) G(V, E),
where V = {v1, . . . , vN} is the set of nodes, also identified
simply by its indices i = 1, . . . , N , and E ⊆ V × V is the
set of edges. An edge (vi, vj) denotes the information flow
from node i to node j. Moreover, the neighbours of node vi
are contained in the set Ni = {vj ∈ V : (vj , vi) ∈ E}. In
this setting, it is possible to model the clients as the nodes
i ∈ V of the graph G, where each node i is associated to
the corresponding state xi(t) and can receive information
from a given number of neighbours Ni. If we assume that
the control inputs ui(t) are unbounded, then for a set of
integrators we can use the well-known control strategy [12]:

ui(t) =
∑
j∈Ni

aij(xj − xi) =
∑
j∈Ni

aij(Pj − Pi) (15)

where A = A(G) = (aij) is the adjacency matrix given by
aij = 1 if (j, i) ∈ E and aij = 0 otherwise.

The resulting system is as follows

ẋ(t) = −Lx(t), ∀ t ≥ ts (16)

where x(t) = [x1(t), ..., xN (t)]> is the stack vector of all
the agents’ states and L is the Laplacian matrix associated
to A. If G is strongly connected, −L has eigenvalues such
that −λN−1 ≤ −λN−2 ≤ · · · < −λ0 ≤ 0, where λ0 = 0
and rank(L) = N − 1. A well-known result of [12] is that
the control (15) globally asymptotically solves the consensus
problem for the set of integrators in (14). In other words,

it results that (16) is stable and ∃α ∈ R s.t. it converges
to the equilibrium point x̄ = α1, i.e., x̄i = α, ∀ i ∈ V .
If G is balanced, i.e., the in-degree is equal to the out-
degree for each node, then α = E[xi(ts)] = 1

N

∑N
i=1 xi(ts).

Thus, when the consensus is reached, xi(t) = Pi(t) − t =
T0i +

∫ t

ts
ui(ξ)dξ = α and thus Pi(t) = t + α for all i. In

other words, if we can solve the consensus problem, we also
solve the playback time synchronization problem. Notice that
when G is balanced α = E[xi(ts)], so it turns out that Pi(t)
converges to t + E[T0i], where the second term represents
the average of the initial delays of the clients.

However, the previous approach entailed the unrealistic
assumption of unbounded control inputs ui(t). To tackle this
issue, we define the following saturation function:

σ(x) =

δ x > δ

x −δ ≤ x ≤ δ
−δ x < −δ

(17)

that, in the case of an N -element vector, will define σ(x) =
[σ(x1), σ(x2), . . . , σ(xN)]>.

Suppose that ui(t) ∈ [−δ, δ], ∀ i ∈ V , then

ẋ = σ(u) (18)

At this point, using the same control strategy as in (15),
ẋi(t) = σ(ui(t)) = σ

(
ki
∑

j∈Ni
aij(xj − xi)

)
, where ki >

0, ∀ i ∈ V are controller gains. Therefore it results that

ẋ = σ(−KLx) (19)

where K = diag{k1, . . . , kN}.
Before introducing the main result, we recall the following

lemma from [13]:

Lemma 1. Given a strongly connected digraph G, the
associated Laplacian matrix L has a simple eigenvalue in
zero and all the nonzero eigenvalues have positive real part.
Let r = [r1, . . . , rN]> > 0 be a left eigenvector of L
associated to the zero eigenvalue, i.e., r>L = L>r = 0, and
let R = diag{r1, . . . , rN}, Q = RL + L>R. Then R > 0,
Q ≥ 0 and the kernel of Q has dimension 1 and is given by
span{1N}.

We are now ready to introduce the following:

Theorem 2. Consider a multi-agent system represented by
a graph G whose dynamics are described by (18). Suppose

1065

Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:29:52 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100

Time [s]

−25

−20

−15

−10

−5

0
x
i(
t)

[s
]

Fig. 3. States dynamics xi(t) for the ring topology

Leader

Fig. 4. Ring topology with a leader node

each agent applies the control (15) and assume that G is a
strongly connected and directed graph. Then the control (15)
globally asymptotically solves a consensus problem.

From Theorem 2, we can state the following:

Corollary 3. Consider N users watching the same live
streaming event. Suppose the users can receive the playback
times Pj(t) from a set of clients j ∈ Ni according to an
established strongly connected digraph whose adjacency ma-
trix is A = (aij). Then, if the playback rate is set as p(i)r (t) =

1 + ui(t) with ui(t) = σ
(
ki
∑

j∈Ni
aij(Pj(t)− Pi(t))

)
bounded in [−δ, δ], where ki are appropriate control gains,
the playback times will be synchronized asymptotically.

Remark 1. When consensus is reached at a playing time
t+α (α < 0), all clients will watch the live streaming content
with a temporal delay of α with respect to the current event
time transmitted by the video provider.

Remark 2. Plugging (9) into (3) for a generic user i under
Assumption 1, we obtain the following dynamics:

q̇i(t) = fi(t)− pr,i(t) = (fi(t)− ui(t))− 1 (20)

As a consequence, ui(t) can be seen as a disturbance in
the filling rate that the ABR algorithm is able to reject in
order to avoid a rebuffering event.

Theorem 4. Consider a strongly connected digraph G to
which a leader node is added imposing a constant state x0. If
it is possible to define a spanning tree in the new graph with
the leader as its root, then the system (18) augmented with
the leader node achieves leader-follower consensus under
the control strategy (15).

0 50 100 150 200 250

Time [s]

−24

−22

−20

−18

−16

−14

−12

−10

x
i(
t)

[s
]

Fig. 5. States dynamics xi(t) for the ring topology with a leader node

The proofs of Theorem 2, Corollary 3 and Theorem 4, fol-
lowing from [14], [15], are omitted due to space constraints.

IV. RESULTS

In this Section, we consider some network topologies to
show the effectiveness of our approach. Once ts is fixed,
i.e., a time instant when all the clients are playing the video
content, we define the initial states of the nodes identifying
the initial time delays T0i that each client experiences. We
have set ki = 1 and ui(t) ∈ [−δ, δ], δ = 0.3, ∀ i ∈ V .
In the following simulations, we suppose that each node
sends information to and receives information from all of
its neighbours. Notice that this assumption could also be
removed as long as the graph stays strongly connected. As a
first example, let us consider a directed strongly connected
ring topology with N = 13 nodes. In this topology, each
node can communicate only with two neighbours.

As we can see from Figure 3, consensus is reached at
roughly −17 seconds, which means that Pi(t) = t − 17,
∀ i ∈ V , thus implying that all the clients are synchronizing
around a playout time delayed of 17 seconds. Notice that in
the simulations the zero corresponds to the chosen ts.

In Figure 4 we consider the leader-following approach for
the ring topology by adding a fourteenth leader node (green
node in the figure) imposing a state equal to −10, which
guarantees a reduced temporal delay.

Let us assume that the leader node can communicate only
to one other node. As expected, a consensus is reached at
−10 (Figure 5) after about 150s. Notice that the dashed black
line in the figure represents the state set by the leader node.
Moreover, the transient can be made smaller if the leader is
allowed to communicate also with other nodes or by properly
increasing the gains ki. Once the consensus is achieved, it
will result that Pi(t) ' Pj(t) ' t − 10 ∀ i, j = 1, . . . , N ,
which implies that all the clients are synchronized with a
delay lower than the leaderless case (Figure 3). Figure 6
shows the dynamics of the control inputs. In particular, after
a transient in which most of the control variables experience
a saturation, they converge to zero as desired.

Let us now consider a different topology of the network
composed of three groups of clients. Each client in a group is

1066

Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:29:52 UTC from IEEE Xplore. Restrictions apply.

0 50 100 150 200 250

Time [s]

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3
u
i(
t)

Fig. 6. Control inputs ui(t) in the case of a ring topology with a leader
node

Leader

Fig. 7. Network topology with groups of clients and a leader

connected to the others through several edges, while groups
are connected with fewer edges as depicted in Figure 7. No-
tice that this graph, as the previous cases, contains 13 nodes
with the same initial states and control input bounds. Also in
this case, we consider a fourteenth leader node (green node
in the figure) influencing only one other node in the network
with the purpose of making the states converge to −10.
In this case, the transient time needed to reach consensus
is greater than 200 seconds (Figure 8) due to the different
network topology and the specific node the leader influences.
In fact, if we suppose the leader communicates with the
yellow node instead, the time required to obtain consensus
with input saturation constraints considerably decreases, up
to less than 100 seconds. It is important to point out that
the number of available video segments encoded by the
DASH standard is 5-10. Since the typical segment duration is
τ = 5 s, the clients playback time can be delayed with respect
to the video provider of an amount that does not exceed
50 seconds. Then, if the leader communicates with several
nodes, the synchronization time should be always acceptable
for live streaming events of generally long duration.

V. CONCLUSIONS

In this paper, we have proposed a distributed control ap-
proach to synchronize clients watching live streaming content
in geographically distributed locations. We have shown that
the playback synchronization problem can be formulated as
a consensus problem of integrators. Simulations on different
network topologies prove the effectiveness of our approach
independently of the protocols adopted. Our future work
will focus on the experimental evaluation of the proposed
approach on real live streaming scenarios.

0 100 200 300 400

Time [s]

−24

−22

−20

−18

−16

−14

−12

−10

x
i(
t)

[s
]

Fig. 8. States dynamics xi(t) for the topology of Fig. 7

REFERENCES

[1] G. Cofano, L. De Cicco, and S. Mascolo, “Modeling and design
of adaptive video streaming control systems,” IEEE Transactions on
Control of Network Systems, vol. 5, no. 1, pp. 548–559, 2016.

[2] T. Stockhammer, “Dynamic adaptive streaming over http– standards
and design principles,” in Proc. of ACM Multimedia Systems (MMSys),
2011, pp. 133–144.

[3] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo, “ELASTIC:
a client-side controller for dynamic adaptive streaming over HTTP
(DASH),” in Proc. of Packet Video Workshop, 2013, pp. 1–8.

[4] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over http,” in Proc. of
ACM Conference on Special Interest Group on Data Communication
(SIGCOMM), 2015, pp. 325–338.

[5] D. Pauwels, J. van der Hooft, S. Petrangeli, T. Wauters,
D. De Vleeschauwer, and F. De Turck, “A web-based framework for
fast synchronization of live video players,” in Proc. of IFIP/IEEE
Symposium on Integrated Network and Service Management (IM),
2017, pp. 524–530.

[6] D. Marfil, F. Boronat, A. Sapena, and A. Vidal, “Synchronization
mechanisms for multi-user and multi-device hybrid broadcast and
broadband distributed scenarios,” IEEE Access, vol. 7, pp. 605–624,
2018.

[7] M. Montagud, F. Boronat, H. Stokking, and R. van Brandenburg,
“Inter-destination multimedia synchronization: schemes, use cases and
standardization,” Multimedia systems, vol. 18, no. 6, pp. 459–482,
2012.

[8] B. Rainer and C. Timmerer, “Self-organized inter-destination multime-
dia synchronization for adaptive media streaming,” in Proc. of ACM
Multimedia (MM), 2014, pp. 327–336.

[9] L. Dal Col, S. Tarbouriech, L. Zaccarian, and M. Kieffer, “A linear
consensus approach to quality-fair video delivery,” in 53rd IEEE
Conference on Decision and Control. IEEE, 2014, pp. 5296–5301.

[10] D. Geerts, I. Vaishnavi, R. Mekuria, O. Van Deventer, and P. Cesar,
“Are we in sync? synchronization requirements for watching online
video together.” in Proc. of the SIGCHI Conference on Human Factors
in Computing Systems, 2011, pp. 311–314.

[11] B. Rainer and C. Timmerer, “Adaptive media playout for inter-
destination media synchronization,” in Proc. International Workshop
on Quality of Multimedia Experience (QoMEX), 2013, pp. 44–45.

[12] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Transac-
tions on automatic control, vol. 49, no. 9, pp. 1520–1533, 2004.

[13] H. Zhang, Z. Li, Z. Qu, and F. L. Lewis, “On constructing Lyapunov
functions for multi-agent systems,” Automatica, vol. 58, pp. 39–42,
2015.

[14] J. Fu, G. Wen, T. Huang, and Z. Duan, “Consensus of multi-agent
systems with heterogeneous input saturation levels,” IEEE Transac-
tions on Circuits and Systems II: Express Briefs, vol. 66, no. 6, pp.
1053–1057, 2018.

[15] Y. Xie and Z. Lin, “Global optimal consensus for multi-agent systems
with bounded controls,” Systems & Control Letters, vol. 102, pp. 104–
111, 2017.

1067

Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:29:52 UTC from IEEE Xplore. Restrictions apply.

