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ABSTRACT

In this paper hyperchaos synchronization is restated as a
nonlinear observer design issue. This approach leads to a
systematic tool, which guarantees the synchronization of a wide
class of hyperchaotic systems via a scalar signal. The proposed
technique has been applied to synchronize two well-<nown
examples of hyperchaotic dynamics: ROssler’s system and
Matsumoto-Chua-Kobayashi circuit.

1. INTRODUCTION

In the last few years several researchers have focused their
attention on the problems related to chaos synchronization and
control [1]-[6], [11]. In particular, different methods have been
developed in order to synchronize chaotic systems. For
instance, the well-known scheme proposed in {1] consists in
taking a chaotic system, duplicating some subsystem and
driving the duplicate and the original subsystem with signals
from the unduplicated part. When all the Lyapunov exponents
of the driven subsystem (response system) are less then zero,
the response system synchronizes with the drive system,
assuming that both systems start in the same basin of attraction.
It should be noted that most of the methods developed until
now concerns the synchronization of low dimensional systems,
with only one positive Lyapunov exponent. Since this feature
limits the complexity of the chaotic dynamics, the adoption of
higher dimensional chaotic systems has been recently proposed
for secure communications [4]. In fact, the presence of more
than one positive Lyapunov exponent clearly improves security
by generating more complex dynamics. This approach,
however, raises the question of whether synchronization can
still be achieved by transmitting a scalar signal. Until now, only
some attempts have been made to give an answer to this
question. In [4] a linear combination of the original state
variables is used to synchronize hyperchaos in Rossler’s
systems. However, this technique cannot be considered a
systematic tool for synchronization, since the coefficients of the
linear combination are somewhat arbitrary. An interesting result
has been illustrated in [5], where a parameter control method is
proposed for hyperchaos synchronization. Anyway, the
computation of the Lyapunov exponents is still required in
order to verify the synchronization.
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In this paper a simple and rigorous method for synchronizing
hyperchaotic systems via a scalar signal is developed [6]. The
proposed technique, based on nonlinear control theory, has
several advantages over the existing methods:

e it enables synchronization to be achieved in a systematic
way;

e it can be successfully applied to a wide class of
hyperchaotic systems;

e it does not require the computation of any Lyapunov
exponent;

e it does not require initial conditions belonging to the same
basin of attraction.

The paper is organized as follows. In section 2, hyperchaos
synchronization is restated as a nonlinear observer design issue.
Following this approach, a linear and time-invariant
synchronization error system is obtained, for which a necessary
and sufficient condition is given in order to asymptotically
stabilize the origin [6]. Finally, in section 3 the proposed
method is applied to synchronize two well-known examples of
hyperchaotic dynamics: Rossler’s system [6] and Matsumoto-
Chua-Kobayashi circuit [7] (shortly, the MCK circuit).

2. NONLINEAR OBSERVER DESIGN FOR
SYNCHRONIZING HYPERCHAOS
Definition I: Given two chaotic systems, the dynamics of
which are described by the following two sets of differential

equations:

x=f(x) M
y=r@ 2

where xe®R”, yeR”, and f:R" > RN" is a nonlinear
vector field, systems (1) and (2) are said to be synchronized if

et)=(y(t)-x(t))>last—> o 3)
where ¢ represents the synchronization error [2].

Definition 2: An observer is a dynamic system designed to be
driven by the output of another dynamic system (planf) and
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having the property that the state of the observer converges to
the state of the plant [8], [9]. More precisely, given dynamic

system (1) with output z = s(x)eR", the dynamic system

y=f(y)+gz-s(y)) 4)

is said to be a nonlinear observer of system (1) if its state y
converges to x as t—>o, where g:R" - R" is a suitably

chosen nonlinear function. Moreover, system (4) is said to be a
global observer of system (1) if y—>x as t—o for any

initial condition y(0), x(0) [8].

Remark 1: System (4) is a (global) observer of system (1) if the
error system

é=f(»)+g(s(x)-s(y) - f(x)

5
= f(x+e)+ gl(s(x) - s(x+e)~ £(x) = h(e.1) ©)

has a (globally) asymptotically stable equilibrium point for
f:lo).lock diagram of a nonlinear observer for the state x of
system (1) is reported in Fig. 1.

Assumption I: The dynamic system (1) can be written as:
x=f(x)=Ax+b f(x)+c 6)
where Ae R, beR™ ceR™ and /:R" > R.

Remark 2: Several hyperchaotic systems satisfy Assumption 1.
For example, R&ssler’s system [6], the MCK circuit [7] and the
oscillators reported in {10] all belong to the class defined by
(6).

Regarding the synchronizing signal, it is worth noting that s(x)
is an artificial output of system (1) which can be properly
designed to feed the nonlinear observer (4). Since the adoption

of a scalar signal is a suitable feature for secure
communications applications, it is assumed that z=s(x)eR .

Proposition 1. Given system (6), let
s(x)= f(x)+ kx Y]

be the scalar synchronizing signal with k =[k;.4,,...k,] e R"",
and let

&(s(x) = s(»)) = b(s(x) - 5(y)) ®)

be the function g in equation (4). Then system (5) becomes
linear and time-invariant, and can be expressed as:

é= Ae-bke= Ae + bu 9)

where u = —ke plays the role of a state feedback.

The proof is reported in [6].

Proposition 2: The n-dimensional linear time-invariant, single-
input dynamic system x=Ax+bu is controllable if the
Ab A’ .. A™'b] is full rank.

In this case, all the eigenvalues are controllable, i.c., they can
be arbitrarily assigned by the introduction of state feedback [6].

controllability matrix k

Now, a necessary and sufficient condition for synchronizing
hyperchaos can be given [6].

Proposition 3: Given (6)-(8), a necessary and sufficient
condition for the existence of a feedback gain vector k such that
system (4) becomes a global observer of system (1) is that all
uncontrollable eigenvalues of the error system (9), if any, have
negative real parts.

The proof is reported in [6].

3. EXAMPLES

3.1 Synchronization of Ré&ssler’s system

Rossler’s system [6] can be written in the form (6) as:

170 =1 -1 o7x] [o 0
o| [1 025 0 0 0
e 2 e, + an
Ll fo o o o |x|Th 3
s 1o 0 -05 005]x]| |0 0

This system exhibits a hyperchaotic behavior starting from
proper initial conditions (see Fig. 2). Proposition 1 gives:

s(x):x,x3+§jij,
=T
gs(x)-s(N=[0 0 1 0f (s(x)-s(y)

whereas equation (4) becomes:

» 0 -1 -1 0 In 0 0

y I 025 0 1 0 0

= YLl s+ |+

Vs 0 0 0 0y 1 3

v] [0 0 -05 005)y,| |0 0

+fo 0 1 of (s(x)-styn (12)
with the error system given by:

& 0 -1 -1 0 0 e
e, 1 025 0 1 0 e,
= —t e k Kk k&
gl {fo o o of b o ko k] e
é, 0 0 -05 005} |0 e,

(13)
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The controllability matrix of (13) is full rank. Taking into
account Propositions 2 and 3, there exists a gain vector k such
that system (12) becomes a global observer of system (11). This
means that y — x ast — o for each initial state x(0) and y(0).
For instance, all eigenvalues of (13) are placed in ~1 for k=[-
33712 -0.9561 4.3000 -5.8126]. Fig. 3 shows the
synchronization between the selected variables x, and y, .

3.2 Synchronization of MCK circuit

The first experimental observation of hyperchaotic oscillations
from a real physical system has been described by Matsumoto,
Chua and Kobayashi [7]. The circuit implemented in [7] is
autonomous and contains only one nonlinear element, a three-
segment piecewise-linear resistor. All other elements are linear
and passive, except an active resistor, which has negative
resistance. By considering the parameters and the equations
reported in [10], the dynamics of the MCK circuit can be
rewritten as:

100 -1 0o oTx] [
{007 0 o x| o

= + , 14
nlJo o o -10fx|]0 gliox) (1)

%] {0 0 15 0 |x]| |0

~02+43(x, ~x;+1)
glx,x;)=1-0.2(x, - x,)
~02+3(x,—x; 1)

if x—-x<-1,
if —1<x, —x <1,

if x—x;>1

The projection of the hyperchaotic attractor on the plane
(x| ,x;) is reported in Fig. 4. From Proposition 1, it follows:

s(x)= g(x,,x3)+ i}k,-x,
i=

gs(x)-s(y)=[-1 0 10 0f (s(x)-s(y))

5700 =1 0 o
50 10 07 0 o 0
=10 N ,
HWllo o o -1w0 10 [E0v73)+

ve] 10 0 15 0 {y] [0

~-1

SRS

+[-1 0 10 0of (s(x)- s(y)) (15)

Since the controllability matrix of the error system is full rank,
its eigenvalues can be moved anywhere. By placing them in

~1, it results k=[-0.3764 0.2384 0.4324 -0.4314] and system
(15) becomes a global observer of system (14). The
synchronization between the selected variables x, and y, is

shown in Fig, 5.

4. CONCLUSION

In this paper a simple and rigorous method for synchronizing a
wide class of hyperchaotic systems via a scalar transmitted
signal has been developed. The proposed tool does not require
cither the computation of the Lyapunov exponents or initial
conditions belonging to the same basin of attraction. Simulation
results on Rossler’s system and MCK circuit have shown the
usefulness of the suggested method.
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Figure 1. Synchronization as a nonlinear observer issue: (a) system (1); (b) system (2); (c) structure of the observer (4).
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Figure 2. A projection of Rdssler’s hyperchaotic attractor. Figure 3. Synchronization between the
state variables x, and y, of systems
(11)and (12).
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Figure 4. Projection on the plane Figure 5. Synchronization between
(x1,x;) of the hyperchaotic attractor the state variables x, and y, of
described by (14). systems (14) and (15).
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