5 CHEN,F., and LEUNG, BH.: ‘A high resolution multibit sigma-delta
modulator with individual level averaging’, IEEE J. Solid-State
Circuits, 1995, SC-30, (4), pp. 453-460

6 BRANDT, F., and WOOLEY, B.A: ‘A 50-MHz multibit XA modulator
for 12-b 2-MHz A/D conversion’, IEEE J. Solid-State Circuits,
1991, SC-26, pp. 1746-1756

7 TaN,N, and ERIKSSON,S.: ‘Fourth-order 2-stage AY modulator
using both 1 bit and multibit quantisers’, Electron. Lett., 1993, 29,
pp. 937-938

8 Dias, V.F, and LIBERALL V.. ‘Cascade pseudomultibit noise shaping
modulators’, IEE Proc. G, 1993, 140, pp. 237-246

Synchronisation of hyperchaotic oscillators
using a scalar signal

G. Grassi and S. Mascolo

A method is presented for synchronising two recent examples of
hyperchaotic oscillators via a scalar transmitted signal. The
approach, based on linear control theory, is simple and rigorous.
It does not require either the computation of the Lyapunov
exponents or initial conditions belonging to the same basin of
attraction.

Introduction: In recent years much interest has been devoted to the
study of chaotic system synchronisation [1 — 4]. This phenomenon
could lead to interesting applications in secure communications
[5]. To obtain higher security the adoption of hyperchaotic sys-
tems, characterised by two or more positive Lyapunov exponents,
seems to be more advantageous than the use of chaotic systems
with only one positive Lyapunov exponent [6, 7].

This Letter describes a technique for synchronising two recent
examples of hyperchaotic oscillators [8, 9]. The approach, by
exploiting results from modern linear control theory, enables syn-
chronisation to be achieved via a scalar transmitted signal.

Synchronisation of 4D oscillators: A simple 4D oscillator contain-
ing an opamp, two LC circuits and a diode was presented in [8].
Its hyperchaotic behaviour has been confirmed by both experi-
ment and numerical simulation. The circuit dynamics is described
in dimensionless form by the following [§]:

t1 =0.721 — 29 — 23 (1)

Ty =2 (2)

%3 = 3(x1 — 24) (3)

4 = 3x3 —30(xy — 1) H(zg — 1) (4)

H{(z) is the Heaviside function, i.e. H(z < 0) = 0 and H(z =2 0) = L.

The proposed technique consists in choosing a suitable nonlin-
ear coupling between the drive system (eqns. 1 — 4) and the driven
one:

71 = 0.7y — y2 — s (5)

Y2 =11 (6)

¥z = 3(y1 — ya) (7)

Y4 = 3ys — 30(ys — 1) H(ya — 1) — 30(s(x) ~ s(y)) (8)

where the scalar transmitted signal s(x), x € R4,
4
$(x) = (24 = DH(za — 1)+ 3 kim;
i=1
has been designed so that the synchronisation error system is lin-
ear time-invariant:

é1 = 0.Te; —ey —e3 (9)
&= e (10)

és = 3(e; —eq) (11)
és = 3es — 30u (12)

Note that the variable u = —X* ke, plays the role of state feed-
back. The diagram of two such coupled oscillators is shown in

Fig. 1. In particular, the multiterminal black box [12] with 7
= 30(s(x) ~ s(y)) takes into account the coupling between the
oscillators. Since the controllability matrix of the system of eqns.
9-12 is full rank, from linear control theory [10, 11] it follows
that the system eigenvalues can be placed anywhere by proper
choice of the feedback gains k. For instance, the cigenvalues of
eqns. 9 — 12 are placed in -1 for k, = 47.4927, k, = —104.1723, k,
= 6.8388 and £, = —1.3567. It is worth noting that y — x implies
s(y) — s(x), that is, the dynamics of the systems eqns. 1-4 and
eqns. 5—8 become identical. Fig. 2 shows how the state variable
»,(0) tracks x,(¢) after the synchronising signal is switched on at
(#'T) = 30, with T =L,C,, x, = U4 /U, y, = UZ /U, whereas U,
= 0.7V is the forward voltage drop of the diode (see [8]).
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X1:¥1

o

1 j" ‘

0 20 40 80 80 1 60 120
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Fig. 2 Time waveforms of chaotic variables x(t) and y,(t) of systems in
egns. 1 —4 and 5 - 8, respectively

3

Synchronising signal is switched on at (#/7) = 30, x, = U /Uy, y, =
U2 11Uy, Uy = 0.7V

Synchronisation of oscillators with gyrators: Recently, a hypercha-

otic oscillator realised without inductance coils has been described
in [9]. It contains a negative impedance converter, two capacitors,
two gyrators and a diode. By taking the circuit parameters
reported in [9], the dynamics can be written as

t1 = 0.5521 — x5 — 40(371 — T3 — 1)H(321 — 3 — 1) (13

i‘z =2 (14:

Ii‘g = —'(1/031)274 + (40/031)(%1 — X3 — 1)H(Z‘1 — X3 — 1
(15
4 = (1/0.33)x5 (16
By considering the following driven system:
Y1 =055y —y2 —40(yy —ys — D)H @1 —y3 — 1)
— 40(s(x) — 5(y)) ()
U2 =41 (18)
y3 = —(1/0.31)yq + (40/0.31)(y1 — y3 —1)H (y1 —y3 —1)
+ (40/0.31)(s(x) — s(y)) (19)

where the scalar transmitted signal

4
s(x) = (m1 —mg — DH (w1 — 5 — 1) + Y _ kszs
i=1
has been obtained by adding the current in the diode to a linear
combination of the circuit state variables; a linear time-invariant
error system is derived:
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é1 = 0.55e; — e5 — 40u (21)
ér=e (22)

é3 = —(1/0.31)eq + (40/0.31)u (23)
és = (1/0.33)es (24)

Again, u = -X% ke, represents a state feedback. The diagram of
the synchronisation scheme is given in Fig. 3, where the black
boxes with I, = —40(s(x) — s(y)) and I, = (40/0.31)(s(x) — s(y)) rep-
resent the coupling between the oscillators. Since the controllabil-
ity matrix [11] of the system of eqns. 21 — 24 is full rank, the
eigenvalues can be placed, for instance, in -1 for k; = -0.0109, %,
= 0.0178, k; = 0.0319, k, = —0.0046, synchronising the systems of
eqns. 13 — 16 and eqns. 17 — 20. Fig. 4 shows that y,(¢) tracks x,(¢)
after the synchronising signal is switched on at (#7) = 30, with T
=vL,C, x, = UL /Uy, y, = U4 1U,, Uy = 0.65V (see [9]).
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Fig. 4 Time waveforms of chaotic variables x,(t) and y/(t) of systems in
eqns. 13 — 16 and egns. 17 — 20, respectively

Here, T = 0.237ms, x; = U /Uy, y, = UZ 1Uy, Uy = 0.65V

It is worth noting that the error systems of eqns. 9 — 12 and
eqns. 21 — 24 have been globally asymptotically stabilised at the
origin. Therefore, it is not necessary for the initial conditions of
the corresponding drive and response systems to belong to the
same basin of attraction.

Conclusions: In this Letter a new tool for synchronising two exam-
ples of hyperchaotic oscillators using a scalar transmitted signal
has been proposed. The idea is to design the synchronising signal
so that a linear time-invariant error system is obtained. In this
way, synchronisation can be achieved by exploiting results from
modern control theory. The approach is simple, rigorous and does
not require the computation of any Lyapunov exponent [7].
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Adaptive receiver for DS/CDMA
communications over impulsive noise
channels

Ho-Chi Hwang and Che-Ho Wei

A new adaptive algorithm is proposed for training soft-limiter
based correlation receiver in which the direct sequence code
division multiple access signals corrupted by impulsive symmetric
(-stable noise are demodulated. The new adaptation algorithm
allows simpler implementation and faster convergence speed in
comparison with the traditional adaptive stochastic gradient-
based algorithms.

Introduction: Adaptive linear filtering algorithms have been com-
monly used to train minimum mean-squared error (MMSE) linear
detectors [1] for demodulating direct-sequence code division multi-
ple access (DS/CDMA) signals over an additive white Gaussian
noise (AWGN) channel. However, in some realistic communica-
tion links, some natural, as well as man-made, interference is non-
Gaussian and impulsive [2]. The impulsive noise is commonly rep-
resented by the symmetric o-stable (SaS) process [2], in which the
probability density function (pdf) is given by £,(y, 6; x) = (1/2r) I
> exp(jdm-y| o] Deioxdw, where o0 < o < 2) implies the ‘thick-
ness’ of the tails of the pdf and the dispersion y(y > 0) relates to
the spread measure of the pdf around the location parameter, 6.
When the SaS process has a smaller o, it has a largely increased
probability of large amplitudes.

Because SoS noise {except oo = 2) has no finite variance, the
least mean p-norm (LMP) algorithmn [2] and the normalised LMP
algorithm [3] instead of the least-mean-square (LMS) error algo-
rithm are used for adaptive linear filtering for SaS random proc-
esses. The value of p, constrained to p < o, is usually taken as p =
1 when o is either unknown or varying in time. When p = 1, the
LMP algorithm is called the least mean absolute deviation
(LMAD) algorithm. In this Letter, a new adaptation algorithm is
developed for adjusting the soft-limiter (SL) correlation receiver
for demodulating the DS/CDMA signals corrupted by SoS noise.
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