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Abstract—End-to-end rate-based congestion control algorithms,
such as TFRC, RAP or ARC, are advocated for audio/video
transport over the Internet instead of window-based protocols.
The reason is that a smoother dynamics of packet sending is
advantageous when avoiding abrupt rate changes is of importance.
Once the sending rate has been computed by a generic rate-based
congestion controller, all algorithms proposed in the literature
schedule packets to be sent spaced at intervals that are equal
to the inverse of the sending rate. In this paper we show that
such an implementation omits to consider a key feature. In fact,
the scheduled sending time of a packet is affected by significant
uncertainty due to the fact that it is handled by the Operating
System, which manages a CPU shared by other processes. A
significant experiment reported in the paper shows that a required
constant sending rate can in practice turn into an effective sending
rate that is as low as one half of the desired one. To overcome this
problem, a Rate Mismatch Controller (RMC) is designed aiming
at counteracting the disturbance on the effective sending time due
to the CPU time-varying load. Experimental results using Linux
OS highlight the effectiveness of the proposed controller.

I. INTRODUCTION

Today, the most part of the Internet traffic is handled by
the TCP [1], which implements a congestion control protocol
[15] that has been extremely successful to guarantee network
stability without admission control. The TCP congestion control
is a window-based protocol that sends a window W (tk) of
packets every time tk an acknowledgment packet is received.
This behaviour originates the bursty nature of the TCP, i.e.
the fact that packet are sent in burst of length W (tk). From
the point of view of the network, the burstiness of the TCP
increases network buffer requirements since queue sizes at least
equal to the order of W (tk) must be provided for efficient
link utilization. From the point of view of the user application,
sending a burst of W (tk) packets is simple to be implemented
but is not appropriate when the content to be transported
requires a smoother sending dynamics such as in the case of
a real-time video call. Therefore, today there are two active
forces that are pushing towards the reduction of TCP burstiness:
one is the spreading of gigabit networks for which burstiness
mitigation means an important reduction of network buffer
sizes; the other is the evolution of Internet from being an
efficient platform for best-effort data delivery also to one for

multimedia time-sensitive content [2], [3], [4].
The basic idea for reducing traffic burstiness induced by

window-based congestion control is to design rate-based con-
gestion control where packets are sent equally spaced in time
at interval proportional to the inverse of the sending rate r.
The sending rate r is computed every sampling time, f.i. every
RTT , or every time a feedback report (or ACK) packet is
received from the network or from the receiver. Feedbacks can
be implicit, such as timeouts or DUPACKs, or explicit such as
Explicit Congestion Notification (ECN) [22]. Once the sending
rate r is computed, it is passed to a sending engine, or send
loop, which is in charge of scheduling packets queued in the
transmission buffer at the specified rate r.

Several rate-based schemes have been proposed in literature
for the transport of multimedia streams [11], [12], [17], [24]
but much less attention has been devoted to the implementation
at user space of a rate-based congestion control algorithm.
This may be at the root of the fact that, up to now, there
is no evidence that a rate-based protocol is emerging as a
widespread adopted solution. In fact, it is worth noting that
YouTube employs standard TCP for delivering videos and
implementations of peer-to-peer video distribution systems,
which accounts for the 65% of the peer-to-peer traffic that in
turn accounts for 60% of the Internet traffic [19], also employs
TCP even though the use of TFRC had been long debated
[8], [29]. Finally, Skype audio/video implements proprietary
congestion control mechanisms at application layer over the
UDP protocol [9], [10].

The analysis or design of rate-based control algorithms
is out of the scope of this paper which indeed focuses on
implementing a rate-based congestion control algorithm at
application level over a general purpose Operating System. The
problem here is that the unpredictable load of a general purpose
Operating System (OS), which is due to other processes that
share the CPU, forbids exact timing in packet sending. In fact,
the scheduled sending time of a packet is affected by significant
uncertainty due to the fact that it is handled by the Operating
System, which is shared by other processes. A significative
experiment reported in the paper shows that a required constant
sending rate can in practice turn into an effective sending rate
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that is as low as one half of the desired one. To overcome
this problem, we propose a Rate Mismatch Controller (RMC)
aiming at counteracting the disturbance on the effective sending
time due to the CPU time-varying load.

By building upon the consolidated models of network con-
gestion control proposed in [20], [21], the Rate Mismatch
Controller is designed to form the inner loop of a cascade
control configuration where the rate-based control is the outer
loop. In the proposed model, the unpredictable and time-varying
CPU load can be modeled as a disturbance acting on the send
loop. It is worth noting that we are focusing on application
layer protocols that are usually implemented in the user space
in order to be portable on different platforms. The fact that
the protocol runs in user space makes the interaction between
the operating system and the application an even more critical
factor.

The rest of this paper is organized as follows: in Section II
the state of the art of the proposed solutions in the literature is
presented; in Section III we focus on defining implementation
issues of send loops; in Section IV we extend the model
introduced in [20] by considering the effects of operating
system interaction with the send loop, we propose a cascade
control configuration to overcome the issues dealt in III and
we perform a mathematical analysis in order to prove the
effectiveness of the proposed controller; Section V provides
a performance evaluation of the proposed controller carried out
by using the Linux OS; finally, Section VI summarizes the main
findings presented in this work.

II. RELATED WORK

Research on rate-based congestion control algorithms has
been active since a decade and has produced a significant
amount of literature. In comparison, issues raised by the imple-
mentation of a rate-based sending protocol have received less
attention. The first simple solution to the issue of implementing
a rate-based congestion control can be found in [24], where a
rate-based congestion control protocol named Rate Adaptation
Protocol (RAP) is proposed. In that paper, authors propose to
evenly space packets at intervals equal to the inter-packet gap
(IPG) tipg , which is computed as follows:

tipg =
s

r(t)
(1)

where s is the packet size and r(t) is the computed rate.
Equation (1) implies that the highest the rate the closest the
packets should be sent in order to reflect the instantaneous
sending rate r(t). At first glance, this simple algorithm seems to
be able to provide a sending rate that matches r(t) and mitigates
burstiness. However, as it will become more clear shortly, the
algorithm neglects the important feature that a general purpose
OS cannot guarantee perfect timing in packet sending due to
other processes and timer granularity.

A more involved approach addressing the issue of imple-
menting a rate-based congestion control is presented in [12]
where a send loop is proposed to implement the rate-based

Algorithm 1 Send loop proposed in RFC 3448
Let us define:

∆ = min
(
tipi
2
,
tg
2

)
(2)

and tg as the o.s. timer granularity. The algorithm follows:
1) Send k-th packet at time tk
2) Evaluate tipi,k ← s

r(tk) so that the k+1-th packet should
be sent at time tk+1 = tk + tipi,k

3) Check the system time tnow, evaluates ∆ by using (3)
and if tnow > tk+1 −∆:

a) send the packet immediately
b) otherwise, schedule a timer whose length is tk+1−

tnow

4) When the timer expires the algorithm restarts in 1.

TCP Friendly Rate Control (TFRC) algorithm. The proposed
solution is shown in Algorithm 1.

The algorithm is based on the one proposed in [24] but
it considers for the first time the uncertainty caused by the
operating system on the duration of the inter-packet gaps, which
are named inter packet interval tipi in [12]. In particular, the
third step of the Algorithm 1 tries to counteract the effect of
imprecise timer duration by sending a packet (step 3.a) without
waiting for all the inter packet interval in the case this interval
has elapsed except that for an amount equal to:

∆ = min
(
tipi
2
,
tg
2

)
(3)

We interpret the step 3.a as a heuristic aiming at anticipating
the packet sending time to compensate when the sending times
are delayed due to imprecise timers.

Moreover, an additional note in [12] considers the case when
tipi is too small because the rate is high. In such cases authors
recommend to send short bursts of several packets separated
by intervals of the OS timer granularity.

TCP pacing is another technique aiming at spacing packets
sending in order to mitigate burstiness when window-based
congestion control protocols are used [5], [14], [18]. In fact,
TCP produces a very bursty traffic when accessing high-speed
networks that can lead to link underutilization and high packet
losses in case router buffers are not large enough. Recently,
it has been shown that sub-RTT time scale burstiness that are
due to the nature of the TCP packet sending mechanism can
lead to macroscopic effects on steady state bandwidth sharing
[27]. TCP pacing evenly spaces a congestion window worth
of packets in a RTT by scheduling timers whose length is
equal to RTT/cwnd. The implementation issues affecting this
technique have been studied in [16], [26]. In particular, [26]
points out that software timer based approaches are not accurate
enough when high rates need to be produced. The solution
proposed in the paper is a module executed in kernel space,
which inserts dummy packets between real packets in order
to implement packet pacing. Dummy packets have to be later
discarded by the switch where the network interface card (NIC)
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Figure 1. Sending Engine (send loop) which actuates the congestion control
algorithm

is connected. The proposed solution becomes very involved
when multiple flows access the same link because in this case
packet gaps length have to be recalculated accordingly [26]. In
[16] authors propose a solution that needs an ad-hoc designed
NIC and modifications to the operating system and to packet
headers in order to be implemented.

III. SEND LOOP ISSUES FOR RATE-BASED APPLICATIONS

The TCP window-based congestion control evaluates and
immediately sends the amount of data W when an ACK is
received. In this case the sending of packets is ACK-clocked
and there are no open implementations issues. On the other
hand, in the case of rate-based congestion control algorithms
a stream of packets has to be sent at the rate computed by
the controller by scheduling packets to be sent at precise
instants using timers. For this reason, in the case of rate-based
congestion control, packets are sent using a send loop that is
asynchronous wrt to the reception of ACK packets. Moreover,
packet scheduling is affected by significant uncertainty due
to the fact that the OS has to manage timers along with
other processes, which introduces unpredictable delays in timer
expiration instant. Figure 1 shows the block named Sending
Engine that represents the send-loop machinery required to
implement packet sending at the rate r(t) computed by the
controller. In the case of a window-based congestion control,
the Sending Engine block implements the trivial task of sending
the whole amount of data W immediately on ACK reception.
On the other hand, in the case of rate-based control, the Sending
Engine has the difficult task of providing a packet sending rate
close to the one computed by the controller in the presence of
timers affected by uncertain duration.

It is worth to notice that if window-based algorithms could
be made not ACK-clocked such as in the case of TCP pacing,
rate-based congestion control algorithms cannot be made ACK-
clocked since packets must be sent at precise instants that are
asynchronous wrt ACK reception.

We can assume without loss of generality that rate-based
congestion control schemes evaluate the input rate every time
a new feedback report (or ACK) is received by the sender.
Assuming that the k-th feedback report is received at time tk,
the send loop has to schedule packets to be sent so that the
resulting rate matches r(tk) in the time interval [tk, tk+1]. Let
us define the set Pk = {(pi, tk,i)|1 ≤ i ≤ n} where tk =
tk,0 < tk,1 < . . . < tk,n = tk+1 indicates that at time tk,i a
packet of size pi has to be sent. We define a packet scheduling

tk tk+1

r(tk) r(tk+1)

t
(k)
ipi t

(k+1)
ipi

Figure 2. Rate-based packet sending: timers are scheduled to send packets at
the specified rate

policy to be zero-bursty, if it is allowed to schedule just one
packet at once, that is, ∀i ∈ {1, . . . n}, ∀k : tk,i 6= tk,i+1 and
such that the packets in each interval are evenly spaced. It is
important to notice that in order to schedule the packet pi to
be sent at time tk,i a timer will be set at time tk,i−1 whose
length is tk,i − tk,i−1.

Thus, we can say that in order to have a zero-bursty schedul-
ing policy, given pi and r(tk) we have to schedule n timers of
equal lengths. It will soon become clear that the zero-bursty
scheduling cannot be enforced for any given r(tk).

In first instance, the sender has to schedule a timer whose
duration becomes smaller and smaller when the rate increases.
However, timer durations are lower bounded by the operating
system timer granularity tg that depends on the frequency the
CPU scheduler is invoked. By noting that typical values for tg
are in the order of 1−10ms, (1) gives the maximum achievable
rate:

rmax =
s

tg
(4)

Equation (4) implies that even with a timer granularity as low as
1 ms and a packet size of 1500B a maximum rate of 12Mbps
is obtainable.

In second instance, the sending rate produced by packet gap-
based algorithms is not accurate due to the fact that timers are
not precise in a general purpose operating system [6].

Let us take a closer look at the way operating systems assign
processes to the CPU. For sake of simplicity and without loss of
generality, let us focus on round-robin FIFO schedulers which
allocate the CPU to processes for a short amount of time, called
time-slice or quantum Q, and then schedules the next process
in the wait queue. Since not all processes make use of the
whole quantum Q, we define T ≤ Q as the actual length of a
quantum period. Moreover, let us assume that ρ is the offered
load, and 1/µ is the average program length in seconds. In
such a scenario it has been found that the expected value of
the waiting time of a process in the wait queue is given by
[23]:

E[tw] =
ρ

µ
(

1
1− ρ

− e−µQ(
Q

E[T ]
− 1))

For this reason, if a process schedules a sleep timer whose
nominal duration is t seconds, the process will be actually
assigned to the CPU again after t+ tw seconds. Therefore, the
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Figure 3. Perfect packet scheduling provides the desired rate, whereas the
timers error tw due to the operating system interaction induce performance
degradation
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Figure 4. Input rate relative error as function of the nominal sleep time t

actual packet sending rate produced by the send loop is affected
by the Operating System load, which acts as a disturbance on
the send loop. In particular, the effective rate re is given by:

re(tk) =
p

t+ tw
< r(tk)

Figure 3 shows how the scheduled sleep timer of length t(k)ipi

is affected by the delay tw, which significantly degrades the
performance of a rate-based control.

In order to further illustrate these concerns, we have imple-
mented a simple send loop under the Linux 2.6.19 operating
system1, which schedules a packet to be sent every t seconds,
and we have logged the actual rate achieved for different
nominal rates. Let us denote with r the nominal rate so that
the sleep time is calculated as p/r, whereas the relative error
is evaluated as 100 · (r − re)/r. Figure 4 shows the effect of
the sleep time t on the relative rate error. It clearly shows that
when the nominal timer length approaches the operating system
timer granularity the relative rate error increases up to 53%. It
is worth noticing that when the tests were run, the system CPU
was idle, so that the disturbance was due only to the operating

1We have used a Linux Kernel compiled with a timer frequency of 1000 Hz,
so that the operating system timer granularity is 1 ms.

system scheduler. Moreover, it is worth noting that the Linux
scheduler offers advanced features designed to implement a
low latency operating system such as kernel preemption, o(1)
complexity and dynamic task prioritization [7]. This is not the
case with other Operating Systems, such as Symbian to name
one, which is characterized by a timer granularity of ∼ 15ms
[25].

For these considerations, it is necessary to design a mech-
anism able to counteract the uncertainty in timer expirations
especially when timer durations are close to the OS timer
granularity, as it happens in the case of high rates. In the next
Section we design a feedback controller able to compensate
the disturbance acting on the exact timer expiration due to OS
timer granularity and load.

IV. THE RATE MISMATCH CONTROLLER

In this Section we propose a controller having the goal
of producing an effective sending rate re(t) that efficiently
tracks the rate r(t) computed by a rate-based congestion control
algorithm. As we have already discussed, this goal is not trivial
due to the fact that the code in charge of sending packets is
executed by a CPU that is shared by other concurrent processes.

To this purpose, we start by the general model of a network
congestion algorithm introduced in [20] and extended in [21].
The literature on modeling network congestion control and TCP
congestion control is rich and a survey of it is beyond the
scope of this work. We only say that a significant part of it
is unduly complex and nonlinear, in contrast with the thoughts
of Van Jacobson that in his cornerstone paper [15] states: “A
network is, to a very good approximation, a linear system. That
is, it is composed of elements that behave like linear operators,
integrators, delays, gain stages, etc”.

In [20] and [21], the fundamental dynamic elements to
be considered when modeling network congestion control are
controllers, integrators that model router buffers, and delays
that model propagation and queueing delays. In particular,
these elements are connected as in the block diagram shown
in Figure 5 where the linear controller is modelled by the
transfer function Gc(s), the delay Tfw from the sender to the
bottleneck queue is modelled by the transfer function e−sTfw ,
the delay Tfb from the bottleneck queue to the receiver and then
back to the sender by the transfer function e−sTfb , and finally
the bottleneck queue length q(t) is modelled by the transfer
function of an integrator, which is 1/s. Figure 5 also shows the
Rate Mismatch Controller (RMC) encircled by dashed lines
which is here introduced in order to reject the disturbance
dcpu(t), which models the effect on exact timing of packet
sending. It is worth noting that the control scheme shown in
5 is made of two control loops: (1) the outer loop models the
end-to-end rate-based congestion control executed between the
sender and the receiver; (2) the inner loop models the feedback
control that is designed for rejecting the disturbance on packet
sending times. The rationale of using the inner control loop
is to counteract the disturbance faster than the outer loop can
do due to the fact that the outer loop is affected by network
propagation delays.
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Gc(s) 1/se−sTfw

e−sTfb

Gr(s)
qt(t)

−
q(t)− −

−

bav(t)dcpu(t)

Inner Loop

Outer Loop

r(t)

Rate Mismatch Controller

re(t)

Figure 5. Block diagram of the overall control system

For the sake of simplicity, and in view of the fact that the
controller has to be discretized and implemented in a code,
we propose the simplest controller that is able to reject a step
disturbance:

Gr(s) =
kr
s

(5)

It is important to remark that the dynamics of the inner loop
can be made much faster than that of the outer loop. This
is important in order to have an efficient rejection of the
disturbance but also not to affect in a significant way the
dynamics of the outer end-to-end control loop that, in this way,
preserves its stability.

A. Discretization of the controller

The controller 5 must be discretized in order to be imple-
mented. To discretize the controller, let us consider its output:

Yr(s) =
kr
s

(Rc(s)−Re(s))

Thus by taking the inverse Laplace transform we obtain:

yr(t) = kr(
∫ t

0

rc(τ)dτ −
∫ t

0

re(τ)dτ) (6)

When we have described the model in the continuous time
domain (Figure 5) we have assumed that the actual rate re(t)
was available as a feedback signal. However, in practice the
send loop sends packets so that the integral of the actual rate
re(t) :

de(t) =
∫ t

0

re(τ)dτ (7)

which is the amount of data de(t) that has been injected in the
network until the time t , is already known.

By combining (6) and (7), we obtain:

yR(t) = kr(
∫ t

0

rc(τ)dτ − de(t)) (8)

One motivation of choosing a simple integrator controller is
now clear: the variable bytes_sent de(t) is available and
updated every time a packet is sent and it is not affected by
any measurement error.

z−11
1−z−1

1
1−z−1

− Send Loop
krd

dcpu(tk)

re(tk)dc(tk)rc(tk)

de(tk−1)

−

re(tk−1)

yr(t)

Figure 6. Rate Mismatch Controller

To complete the discretization of (8) we need to discretize
the integral

∫ t
0
rc(τ)dτ that can be done by using for instance

the Simpson’s Rule:

dc(t) =
∫ t

0

rc(τ)dτ →

dc(tk) = dc(tk−1) + (tk − tk−1)
rc(tk) + rc(tk−1)

2
(9)

where tk indicates the k-th sampling time. The discretization
of de(t) is straightforward:

de(t) =
∫ t

0

re(τ)dτ → de(tk) = de(tk−1) + bs(tk) (10)

where bs(tk) is the amount of data sent in the k-th time interval.
Finally, it should be noted that the feedback variable de(tk)

is delayed by one sample interval. In fact, when we are to send
data at time tk we know the amount of data sent until the
previous sampling time tk−1, i.e. de(tk−1). The error is then
evaluated as:

e(tk) = dc(tk)− de(tk−1)

Thus, the discretized control is as simple as:

yr(tk) = kr(dc(tk)− de(tk−1)) (11)

The control action expressed by (11) can be intuitively
interpreted as follows: a fraction of the amount of data that
have not been sent at time tk because of the disturbance will
be sent at the time tk+1 thus being able to control the error.
By considering equations (11), (9) and (10) the block diagram
of the RMC represented in Figure 6 can be easily derived.
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Proposition 1: A necessary and sufficient condition for the
stability of the proposed controller is 0 < krd < 2.

Proof: By computing the transfer function between Rc(z)
and Re(z) it results:

Gr(z) =
Re(z)
Rc(z)

=
krdz

z − 1 + krd

It is well-known that a linear discrete-time system is asymptot-
ically stable if and only if all its poles lie in the unity circle of
the complex plane. This turns out the condition that the only
pole of the controller z = 1− krd must lie in the unity circle,
i.e. 0 < krd < 2.

Proposition 2: The proposed controller rejects the step dis-
turbances dcpu(t) = 1(t).

Proof: By computing the transfer function between
Dcpu(z) and Re(z):

Re(z)
Dcpu(z)

=
z − 1

z − 1 + krd

and considering that Dcpu is a step disturbance we can write:

Re(z) = Dcpu(z)
z − 1

z − 1 + krd
=

z

z − 1 + krd

Finally, it is sufficient to use the final value theorem to obtain
the steady state value of the output due to the disturbance dcpu:

re(∞) = lim
k→∞

re(tk) = lim
z→1

z − 1
z

Re(z) = 0

B. Send loop implementation

In the Section III we have described the heuristic employed
by the send loop of the TFRC protocol to compensate distur-
bances on exact packet sending times due to CPU load and OS
scheduler.

As opposed to Algorithm 1 that spaces packets in order to
implement a rate-based control, we have proposed a control
algorithm that steers to zero the error between the effective
rate re(t) produced by the send loop and the input rate rc(t)
computed by the end-to-end rate-based control. To the purpose
of implementing this control, we need to execute the send
loop in an asynchronous thread every sampling time Ts. The
sampling time is chosen as a fraction of the minimum round
trip time RTTm as follows:

Ts = max(
RTTmin

N
,Ts,min)

where Ts,min is lower bounded by tg .
The pseudo-code of the proposed send loop is reported

in Algorithm 2. At each iteration of the infinite outer
loop (line 1), the rate mismatch controller evaluates the
data to be sent (data_to_send) by using the function
rmc(sending_rate) and the inner loop (lines 7 to 16)
sends a number of packets without exceeding the amount of
data_to_send bytes (line 10). At this point the thread
sleeps for Ts seconds and then the algorithm continues.

Algorithm 2 Pseudo-code of the proposed Send loop

1 while (running)
2 {
3 sending_rate = get_congestion_control_rate();
4 data_to_send = rmc(sending_rate);
5 bytes_sent = 0;
6

7 while(bytes_sent<=data_to_send)
8 {
9 packet = get_packet_from_tx_queue();

10 if(data_sent + size (packet) < data_to_send)
11 send(packet);
12 else
13 break;
14

15 bytes_sent = bytes_sent + size(packet);
16 }
17 rmc_update_data_sent(bytes_sent);
18 sleep(T_s);
19 }

As in the case of Algorithm 1, the timer duration Ts is
affected by error due to OS timer granularity or, worse, it
can happen that a context switch allocate the CPU to another
process. The rate mismatch controller is able to compensate
the effects of this disturbance as it will be shown in the next
Section.

V. EXPERIMENTAL RESULTS

In this Section we present an experimental evaluation of the
proposed controller. The experimental testbed has been set up
using the netem kernel module [13], which allows WAN sce-
narios with given bottleneck capacities and delays be emulated.
A dumb-bell topology has been considered in the following two
cases: 1) a basic scenario where the rate computed by the end-
to-end rate-based congestion control algorithm is held constant
throughout all the experiment duration; 2) a scenario where
the considered end-to-end rate-based congestion control is the
well-known TFRC; in this case, the RMC controller has been
implemented in the TFRC experimental code provided in [28].

The bottleneck queue length has been set equal to the
bandwidth-delay product in all experiments. The round trip
propagation time has been set equal to 50ms. The RMC gain
has been set equal to 0.7 which provides a good trade-off
between burstiness and reaction speed of the controller.

A. The case of constant sending rate rc(t)

In order to evaluate the performances of the RMC we have
implemented the send loop described in Section IV in a C user
space application. We have considered constant sending rates
rc(t) equal to 1Mbps or 10Mbps in two different scenarios:
• Scenario 1: the CPU load is close to zero;
• Scenario 2: the CPU load is increased by starting a busy-

wait cycle in the time interval [10, 30] s.
Figure 7 (a) and (b) (Figure 8 (a) and (b)) show the effective
sending rate re(t) in the case of a required constant rate
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Figure 7. Effective rate re(t) generated by send loops in the case of rc =
1 Mbps : (a) using the RMC and (b) not using the RMC

rc(t) = 1Mbps (rc(t) = 10Mbps) when the RMC is/is not
used, respectively. In particular, Figures 7 (a) and 8 (a) show
that the mismatch between re(t) and rc(t) is close to zero
even when the “while 1” process generate a disturbance in the
time interval [10, 30]s, thus proving the effectiveness of RMC
in rejecting timer uncertainties. On the other hand, Figures 7
(b) and 8 (b) show that, in the absence of RMC and when the
“while 1” process generate a disturbance in the time interval
[10, 30]s, the effective sending rate exhibits a step-like decrease
that, in the case of Figure 8 (b), is up to half of the desired
sending rate. The absence of RMC also provokes a bursty
sending rate.

We have also implemented the compensation heuristic used
by TFRC and described in Algorithm 1 step 3.a in order to
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Figure 8. Effective rate re(t) generated by send loops in the case of rc =
10 Mbps : (a) using the RMC and (b) not using the RMC

evaluate its effectiveness to reject disturbances on the send loop.
We have found that the heuristic seems effective up to moderate
bitrates; when the desired sending rate achieves the order of
100Mbps some issues starts to appear. Figure 9 compares the
effective rate re(t) obtained using the proposed RMC with the
one obtained using the heuristic described in Algorithm 1 step
3.a when the desired sending rate is rc(t) = 100Mbps. When
the RMC is used, the effective rate produced by the send loop
is very close to desired sending rate and the channel utilization
is 100%. On the other hand, the effective sending rate does
not match the desired sending rate when the heuristic is used
and the channel utilization is 98%, i.e. there is a finite constant
error between the desired and effective sending rate.
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Figure 9. Effective rate produced in the case (a) RMC compensation is used,
(b) compensation heuristic in Algorithm 1 step 3.a is used

B. The impact of RMC on the TFRC protocol

In order to investigate the behaviour of the RMC controller in
a scenario where the computed sending rate is not constant but
is the outcome of an end-to-end rate-based congestion control
such as the one modeled by the outer control loop shown in 6,
we consider the TCP Friendly Rate Control (TFRC) protocol,
which is the most known example of rate-based congestion
control algorithms [12].

The Rate Mismatch Controller (RMC) has been implemented
in the TFRC experimental code [28]. In the experiment, a TFRC
flow has been injected through a dumb-bell topology with a
bottleneck of 10Mbps and an RTT of 50ms .

As we have mentioned in Section II, the TFRC includes
a heuristic aiming at compensating errors on the scheduled
packet sending times (Algorithm 1 step 3.a). Therefore, we
evaluate the sending rate of a TFRC flow in the following
cases: (a) TFRC with RMC; (b) TFRC with compensation
described in Algorithm 1 step 3.a [12]; (c) TFRC without any
compensation. Moreover, we consider two different values for
the timer granularity, namely 1ms (HZ = 1000) and 10ms
(HZ = 100). Achieved throughputs are shown in Figure 10
and 11, respectively.

Figure 10 shows results obtained when the OS has been
compiled with a timer granularity equal to 1ms. In particular,
the TFRC with the RMC compensation provides a smooth
sending rate that matches the available bandwidth. The TFRC
with the RFC 3448 compensation provides a sending rate with a
persistent ripple which is due to the heuristic of the mechanism.
Interestingly, when no compensation is used, the TFRC exhibits
high burstiness and achieves poor link utilization.

By considering the coefficient of variation CoV = σ/µ as an
index to measure the burstiness of the sending rate, the TFRC
with RMC provides a CoV=1.4%, the TFRC with RFC 3448
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Figure 10. One TFRC flow in the cases: a) with the RMC; b) with the
compensation specified in RFC 3448; c) without the compensation specified in
RFC 3448 (Algorithm 1 step 3.a).
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Figure 11. One TFRC flow in the cases: a) with the RMC; b) with the
compensation specified in RFC 3448; c) without the compensation specified in
RFC 3448 (Algorithm 1 step 3.a).

compensation provides a CoV=3.1%.
Figure 11, which refers to the case of an OS timer granu-

larity equal to 10ms (coarse granularity), shows that without
compensation of the send loop, the flow achieves a channel
utilization as low as 10%.

VI. CONCLUSIONS

In this paper we have shown that the send loop required
for implementing end-to-end rate-based congestion controls is
affected by disturbances that have to be rejected. We have
designed, implemented and tested a Rate Mismatch Controller
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(RMC) that is able to produce an effective sending rate that
matches the sending rate computed by a rate-based congestion
control. We have shown that, when there is no disturbance re-
jection, even a constant desired sending rate turns into a bursty
sending rate that is even unable to get a satisfactory channel
utilization. We have also compared through experiments the
heuristic proposed in [12] to reject disturbance, with the RMC.
Results show that RMC works well in all considered scenarios,
whereas TFRC seems not scale to high speed rates.
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