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Abstract— Nowadays the Internet is changing from being
only an efficient platform for data delivering to become a
major platform for many other applications such as Voice over
IP. The stability of the traditional data Internet is due to t he
congestion control algorithm developed by V. Jacobson for the
TCP. However, the TCP congestion control is not optimal for
VoIP applications because of its retransmission mechanismand
additive increase multiplicative decrease sliding windowcontrol.
As a consequence, VoIP applications often employ proprietary
and hidden congestion control algorithms executed over the
UDP protocol. In this paper we focus on Skype audio, which is
the most known and used VoIP application, in order to derive a
mathematical model of its congestion control algorithm. Tothe
purpose, the controller input/output variables are first identified
and then their dynamic relation is described in the form of
a hybrid automaton. Main findings are: (1) Skype does not
implement a delay based control; (2) the loss ratio is the main
input that affects the sending rate; (3) the sending rate matches
the available bandwidth with a finite error.

I. I NTRODUCTION

Skype is by far the most used Voice over IP (VoIP)
application, with an ever growing user-base which today
counts more than 10 million concurrent users. This explosive
growth poses challenges to telecom operators and ISPs both
from the point of view of business model and network
stability.

Skype is a closed source application, which employs a
proprietary protocol that is hidden by using AES encryption
[1]. Some efforts have been spent so far to investigate
the features of the protocol by using reverse-engineering
techniques [1].

In this work we do no not address the Skype signalling
protocol (call establishment, call teardown) already ad-
dressed in [2]. We instead focus on Skype congestion control,
i.e. on how Skype adapts its sending rate in the presence
of variable network conditions. The issue is complex for
several reasons: (1) the protocol behaviour is hidden by AES
encryption; (2) the input variables that drive the controller
are unknown; (3) it is very much reasonable to conjecture
that the controller implements a complex switching dynamics
due to the use of if-the-else decisional blocks.

We will start by considering Skype as it is: a pure black
box of which we do not know the controller inputs and
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we can’t inspect the feedback packets because they are
encrypted.

In order to carry out the investigation, we have set up
a local testbed where different network parameters such as
link delays and capacities, loss rates and queue sizes can be
varied. All those variables are candidate for being inputs to
the controller. In particular, to identify the controller inputs
we have designed a proper set of experiments to evaluate the
response of Skype to any input. Of course, we expect that
some of these inputs will have stronger effects on the output
of the controller (like the available bandwidth and the packet
loss rate) whereas others will have weaker ones.

In [3] we have shown that Skype reacts to network
congestion by reducing the sending rate, thus being able
to match the link capacity to some extent. In this work
we propose a mathematical model of how Skype tracks
the network available bandwidth. In particular, we identify
the controller inputs and outputs and we propose a hybrid
automaton to describe the controller switching dynamics.

The rest of the paper is organized as follows: in Section
II we present an overview of the literature on modeling
congestion control in data networks, which mainly concerns
the TCP congestion control; in Section III we describe
the experimental testbed that has been set up in order to
investigate the Skype congestion controller; in Section IVwe
show the effects of the candidate inputs on the output of the
controller; in Section V we present a mathematical model of
Skype sending rate when congestion occurs and we derive
a hybrid switching dynamic model of a Skype flow when
accessing a bottleneck; a stability analysis is also carried out.
Finally Section VI concludes the paper and outlines further
research work.

II. RELATED WORK

Nowadays, the efficient transport of multimedia flows is
a hot issue due to the booming of applications based on
multimedia content delivery. In this area Voice over IP plays
a key role as it is shown by the success of Skype application
for end users and by the large deployment of SIP-based
networks.

In spite of this explosive growth it is not clear what will
be the impact of multimedia traffic on the stability of the
Internet when a very large amount of this traffic will populate
the network. The main driver of Internet stability is the
TCP congestion control algorithm developed by V. Jacobson
for data delivery [4]. However, TCP is not well suited for
audio/video delivery due to retransmissions mechanism and
sliding window control. As a consequence, audio and video
applications are run over the UDP.
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Fig. 1. Experimental testbed employed in the investigation

Mathematical models have played a major role in un-
derstanding the fundamental properties of large scale and
complex communication systems [5]. Up to now the only
congestion control algorithm for data networks that has
been modelled is the standard TCP congestion control and
its variants [6],[7],[8],[9],[10]. This is due to the fact that
the proposed TCP congestion control algorithms are fully
disclosed and well described in scientific literature and in
standardization bodies such as the IETF.

On the other hand, in the case of audio or video ap-
plications over the Internet, hidden proprietary protocols
are executed over the UDP protocol. The only exception
is represented by the TCP Friendly Rate Control (TFRC)
protocol which is currently being discussed within the IETF
as a possible congestion control algorithm for multimedia
flows [11][12]. In particular the Small Packet version of
TFRC has been proposed in order to be employed for VoIP
applications [13]. In spite of this effort, as a matter of fact,
all commercial audio/video applications run over UDP and
we conjecture that they implement some congestion control
algorithm at the application level.

In [3] we have found that Skype implements congestion
control functionalities which are able to match the available
network bandwidth to some extent, while exhibiting persis-
tent losses.

At our best knowledge this is the first attempt to derive
a mathematical model of the congestion control algorithm
used in VoIP applications such as Skype.

III. E XPERIMENTAL TESTBED

In order to investigate how Skype adapts to variations in
the available bandwidth we have set up a local testbed using
a measurement tool we have developed. We have routed
all packets generated from Skype application to the ingress
queuesq1 and q2 of each host as it is shown in Figure 1.
The measurement tool allows delays, available bandwidth
and buffer size of each queue be set by the user. It is worth
noticing that the described set-up implements an emulated
environment similar to that of Dummynet [14], the only
difference being that in our case we can use two hosts instead
of three.

On each host we have installed Skype (S) and we have
collected logfiles by tracing the per-flow data arriving to and
departing from the queue. By comparing data at the input of
the queue and at its output, we have been able to compute
packet drop rates and goodputs for Skype flows. Goodput,

throughput and loss rate are defined as follows:

goodput=
∆sent − ∆loss

∆T
; throughput=

∆sent

∆T
;

loss rate=
∆loss

∆T

where∆sent is the number of bits sent in the period∆T ,
∆loss is the number of bits lost in the same period. We have
considered∆T = 0.4 s in our measurements.

Our testbed is able to log jitter, RTT, packet loss ratio
as declared by the Skype application in the “Technical Call
Infos” tooltip.

Finally, it is worth noticing that Skype flows are generated
using always the same audio sequence by hijacking audio
I/O1. From now on, theRTT of the connection is set at
100 ms and the queue size is set equal to the bandwidth
delay product unless otherwise specified.

IV. EXPERIMENTS TOINVESTIGATE THE SKYPE

CONGESTION CONTROL

As we have already mentioned in the introduction, mod-
eling the adaptation algorithm employed by Skype to match
network available bandwidth is made complex by the fact
that the source code of the application is not available and
the application uses a proprietary and undisclosed communi-
cation protocol which is hidden by means of AES encryption.

In this investigation we consider the Skype sending rate
as the output of the controller dynamics we are trying to
model. At first we will determine what are the inputs and
then how do they affect the output. We will consider as
possible inputs to the controller the following variables:i)
the end-to-end round trip time (RTT) experienced by the
connection; ii) the packet loss rate. It is worth to notice
that, since those two variables can be measured end-to-end,
they are often employed in congestion control algorithms as
feedback signals to detect network congestion.

For this reason congestion control algorithms are often
classified as follows: i)delay-basedalgorithms, which infer
congestion by monitoring either the one way delay, the end-
to-end round trip time (RTT) or the queueing delay (exam-
ples of congestion control also belonging to this category
are Fast and Vegas TCP [15],[16]); ii)loss-basedalgorithms,
which infer congestion based on packet loss events such as
in the case of TCP NewReno [17], which is the congestion
control standardized by IETF and its variants; iii)mixed loss
and delay basedalgorithms, which use both delay and packet
losses as feedbacks such as in the case of recently proposed
TCP Compound [18].

Figure 2 shows a schematic of the system: the receiver
monitors the feedback variables like round trip timêRTT (t),
loss ratio l̂(t), (as it is shown in the technical info tool-
tip of Skype) and periodically sends these information back
to the sender by piggybacking them on data packets. The
sender receives feedback data and adjusts the sending rate
rs(t) accordingly by throttling both packet size and packet
sending rate.

1Skype DSP hijacker: http://195.38.3.142:6502/skype/
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Fig. 2. Schematic of a Skype audio call over the Internet
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Fig. 3. Sending rate and loss rate in the presence of square wave available
bandwidth of200 s period

In order to derive how the feedback signal affects the
Skype sending rate we consider step-like inputs which is
a basic practice when trying to investigate the dynamic
behaviour of a system. In particular we will start by in-
vestigating Skype flows when in the presence of square-
wave available bandwidths to figure out the effect of network
available bandwidth on the Skype sending raters(t). Then
we will study how variable link delayRTT (t) and packet
loss ratiol(t) influence the sending raters(t). Finally, we
will conjecture and verify a simple model for the Skype
sending rate controller.

Before starting to report our results, it is worth noticing
that Skype version we have used employs the adaptive codecs
iSAC2 and iLBC3 both developed by Global IP Sound.

A. Skype dynamics over a square form wave available band-
width

This scenario aims at showing how the Skype sending
rate reacts to sudden changes of available bandwidth. We
employ an available bandwidth that varies as a square wave
with maximum valueAM = 160 kb/s and minimum value
Am = 16 kb/s (see Figure 3).

We have run the experiment by setting the period of the
square wave equal to200 s, which happened to be large
enough to show all the transient dynamics.

Figure 3 shows that Skype decreases the sending rate when
the link capacity drops from the valueAM to the value
Am. The Skype flow takes approximately40 s to track the

2http://www.gipscorp.com/files/english/datasheets/iSAC.pdf
3http://www.gipscorp.com/files/english/datasheets/iLBC.pdf
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Fig. 4. Packet sending rate and packet size in the presence ofa square
wave available bandwidth of200 s period

available bandwidth during which it experiences a significant
loss rate. It can be viewed that, when the available bandwidth
drops, the loss rate increases to a peak value of35 kb/s
whereas the sending rate reduces to less than20 kb/s in
around40 s. By observing this behaviour it is very reasonable
to conjecture that Skype implements a form of congestion
control algorithm that reduces the sending rate when a high
packet loss rate is measured. We will return soon on this
feature by investigating how Skype behaves in the presence
of packet loss rates.

When the link capacity increases (i.e. att = 400 s) the
input rate ramps up to90 kb/s again in around40 s.

In order to find out the Skype controller dynamics, we
have captured both packet sizes and packet sending rate over
time (see Figure 4). By comparing the two figures it can
be noticed that the packet sending rate drops in a step-like
function when Skype detects congestion, whereas the packet
size is decreased slowly, resulting in the slow adaptation
to the available bandwidth we have dealt above. It seems
that most part of Skype congestion control is performed by
throttling the packet sending rate, whereas the packet sizeis
varied for fine tuning.

B. Skype over lossy link: throttling the loss ratiol(t)

In the previous section we have shown that Skype reacts
to bandwidths shrinking by decreasing the packet sending
rate and the packet size to adapt to the available bandwidth.
However, the experiment we have just described does not
reveal the inputs of the congestion controller either the
congestion control category to which Skype belongs, i.e. loss
based, delay based or both. For pursuing these goals, we
now investigate the influence of packet losses on the Skype
sending rate.

In order perform the investigation, the emulator injects
packet losses which vary as a square wave having a max-
imum value of lM ∈ [0, 1] and a minimum value of0.
The RTT is set to100 ms. We have logged the loss ratios
as it is reported by the Skype application “Technical Call
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Fig. 5. Sending rate, loss ratio, packet rate and packet sizein the case of
a square wave packet loss ratio with (a)lM = 0.2 and (b)lM = 0.4

Info” and we have reported them in the next figures. We
have considered a packet loss ratio which varies as a square-
wave with period of200 s and maximum values in the set
{0.1, 0.2, 0.3, 0.4, 0.5}. Due to space constraints, we only
report the most significant figures obtained forlM = 0.2
and lM = 0.4.

Figures 5(a) and (b) show two different behaviours of
Skype in the presence of persistent losses on the link. In
both cases Skype reacts to a persistent loss by increasing
the transmission rate, i.e. the throughput. By looking at the
packet size over time, in both cases we can see that when a
persistent loss is detected the packet size is increased. This
fact suggests that Skype employs a Forward Error Correction
(FEC) scheme in order to cope with persistent losses.

Figure 5 reveals other interesting facts: i) the Skype
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Fig. 6. Sending rate, loss ratio, packet rate and packet sizein the case of
a variable link delay

estimate of the loss ratiôl(t) looks like a filtered version
of the actual loss ratiol(t) which has been set by using our
emulation tool; ii) more interestingly, it seems that the signal
l̂(t) drives the sending raters(t) in a roughly proportional
way following as it can be argued by looking atrs(t) and
l̂(t) dynamics; iii) in the case oflM = 0.4 (Figure 5 (b))
the sending rate is kept at its maximum value of around
100 kb/s even when̂l(t) reaches0. We argue that in this case
Skype conservatively keeps on the FEC action for roughly
40 s because it measures a high value of losses. Other
experiments have shown that such a behaviour is followed
when lM ≥ 0.3, so that we can argue that Skype uses a
threshold oflM between0.2 and 0.3 to switch from one
behaviour to the other.

Finally, it can be said that, due to the fact that the sending
rate is not decreased when packet losses are detected, Skype
does not employ a loss-based congestion control scheme.

C. Skype over variable delay link: throttling the round trip
time RTT (t)

In this section we investigate the effect of the end-to-end
delay on the Skype sending rate. To the purpose we vary the
link delay as shown in Figure 6 and we set the packet loss
ratio to 0. The available bandwidth is made large enough
in order not to generate congestion on the link. The figure
clearly shows that even very large variations in theRTT (the
last variation is3.0 s) do not produce any effect on the Skype
sending rate. Thus we can also exclude that the application
implements a delay based congestion control algorithm.

We have performed experiments in which the loss ratio
l(t) and RTT (t) vary as in-phase square waves with the
same period (T = 200), but we do not report the figures
due to space constraints. Interestingly, we have found that
the FEC action is inhibited when theRTT increases to
its maximum value. Therefore, it can be concluded that the
RTT influences the behaviour of the FEC action when in
the presence of lossy links.



V. THE SKYPE CONGESTIONCONTROL MODEL

A. Modelling the Skype congestion control

In Section IV-A we have already shown the behaviour
of Skype in the presence of a variable link capacity and
we have found that Skype is able to match the available
bandwidth to some extent after a significant transient time.In
this subsection we provide a mathematical model to describe
the dynamic behaviour of Skype.

We make the hypothesis (confirmed by the large number of
experiments we have run) that the audio codec employed by
Skype is multi-rate so that the encoder can select amongN
levelsLk = {L1, L2, . . . , LN} with L1 < L2 < . . . < LN .
Moreover, we assume that the Skype adaptive codec is able
to select the most appropriate mode according to some metric
which should be the analogous of Carrier to Interference ratio
(C/I) in the case of Adaptive Multi-Rate Wide Band (AMR-
WB) encoder [19]. Leti(t) denote the switching law and let
Li(t) be the encoder level at timet. It is very reasonable to
assume that the switching lawi(t) is implemented by using
if-then-else clauses, thus being very difficult to be identified4.

We make the hypothesis that the Skype control law of
the sending rate in the case of congestion is ruled by the
following equation:

rs(t) = (1 − l̂(t)) · (1 + f(t))Li(t) (1)

where f(t) ∈ [0, 1] models the FEC action, meaning that
when f(t) = 0 the FEC action is off and whenf(t) = 1
the FEC action is at maximum. Basically, we conjecture that
the switching functioni(t) selects the layerLi(t) based on
the network conditions (RTT, jitter, loss ratio) and the rate
is shrinked as much as the filtered loss ratiol̂(t) suggests.
It is worth noting that (1) is able to explain the normal
behaviour of Skype when no congestion or losses occur i.e.
when f(t) = 0 and l̂(t) = 0 when the sending rate results
rs(t) = Li(t) (see Figure 6).

We have run a set of experiments using a square wave
available bandwidth with maximum value of160 kb/s and
minimum value of16 kb/s with a period of400 s. We have
shown the obtained results in Figure 7. In order to verify
Eq. (1), we have conjectured the FEC actionf(t) shown
in Figure 7 and we have supposed thatLi(t) is set to
54 kb/s during the experiment. Figure 7 shows both the Skype
measured sending rate and predicted sending rate using Eq.
(1). It can be seen that the model nicely predicts the Skype
sending rate.

Now let us focus on the conjectured behaviour off(t)
shown in Figure 7: the FEC is kept off until the first
bandwidth increase happens att = 400 s. We conjecture
that Skype infers a bandwidth increase when the RTT of
the connection suddenly decreases and it triggers a “probing
phase”. Moreover, we think that Skype increases the FEC
value when probing for bandwidth since losses can occur
during this phase. Figure 7 shows that the FEC action is
reduced to0.2 when l̂(t) reaches0, and is then turned off
later whenl̂(t) is detected not to grow.

4The boolean expression evaluated in the if clause can be complex.
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Fig. 7. Comparison between the actual and predicted rate using Eq. (1)
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Fig. 8. Skype VoIP hybrid system model

It is worth to notice that the Equation (1) allows us to
explain the long transient time that we have reported in
Section IV-A. The main driver of the Skype sending rate
is in fact l̂(t), which is a low-pass filtered version of the
actual loss ratiol(t). The long transient exhibited bŷl(t)
(see Figure 5) affects the sending rate response to congestion
which is somewhat slow.

B. The Skype Hybrid Automaton

Building upon the results obtained by the investigations
presented in Section IV, we model the Skype VoIP send-
ing rate using thehybrid automatonshown in Figure 8.
In particular, the sending rate can exhibit three different
dynamics depending on the stateSi (i = 1, 2, 3) of the
automaton: in the stateS1, which is characterized by normal
network conditions, i.e. no congestion occurs and no losses
are present, the sending rate is kept unchanged; in the state
S2, which is triggered when Skype realizes that the network
capacity has changed and congestion occurs, the sending rate
is throttled using (1); in the stateS3, which is triggered when
losses are present but are not due to network congestion (i.e.
due to a lossy link, see Section IV-B) the FEC actionf(t) is
used in order to counteract the losses which Skype attributes
to a lossy link.



C. Hybrid modelling of a Skype Flow Accessing a Bottleneck

In this Section we propose a hybrid automaton to model a
Skype flow accessing a single bottleneck link characterized
by an available bandwidthb(t), a drop tail queue whose
maximum size isqM and a round trip timeT which is the
sum of the delay of the forward pathT1 and the delay of the
backward pathT2 . In the following we will denote withxT

the signalx delayedT seconds and we will omit the time
dependence of the signals for brevity. The evolution of the
queue can be modelled by the following differential equation
[9]:

q̇ =

{

0 q = 0, r ≤ b or q = qM , r ≥ b
r − b otherwise

(2)

wherer is the queue input rate. The queue overflow rateo
can be modelled as follows:

o =

{

r − b q = qM , r > b
0 otherwise

(3)

which means that when the queue is full the exceeding input
rater − b is dropped [20].

Let us now consider the model of the sending rate of a
Skype VoIP flow: equation (1) means that the Skype sending
rate rs is mainly driven by the signal̂l which is a filtered
version of the actual packet loss ratiol = o/r measured at
the sender after the delayT2. Based upon experiments we
assume that Skype filterslT2

using a first order low pass
filter with a time constantτ :

˙̂
l = −

1

τ
l̂ +

1

τ
lT2

which by considering thatl = o/r turns out:

˙̂
l = −

1

τ
l̂ +

1

τ

oT2

rT2

(4)

By substituting (1) and (3) in (4), after straightforward
computations we obtain:

˙̂
l =

{

f1 = 1
τ
− l̂

τ
−

bT2

τ(1−l̂T2
)(1+fT2

)LT2

q = qM , r > b

f2 = − 1
τ
l̂ otherwise

(5)
Let x = [l̂ q]T denote the state of the system. It is

simple to show that the state dynamics of the considered
system can be described by means of the three state hybrid
automatonH which is shown in Figure 9. In particular, the
stateΣ1 holds when the queue is empty and the input rate is
below the link available bandwidth, the dynamics of state is
described byΣ2 when the queue is neither full nor empty;
the stateΣ3 describes the evolution of the system when the
queue is full and the input rate is larger than the available
bandwidth.

Lemma 1:The systemΣ3 has a unique equilibrium point:

l̂∗ = 1 −

√

b∗

L∗(1 + f∗)
; q∗ = qM (6)

whenb∗ < (1+f∗)L∗. Considered the system with no delay
the equilibrium is asymptotically stable for perturbations
∆l ∈ [0, 1].

q̇ = 0

Σ1

o = 0
q̇ = r − b

˙̂
l = f2

Σ2

q̇ = 0

Σ3

o = 0 o = r − b

r > b

q = 0 r < b

q 6= 0, q 6= qMr ≤ b

q = qM

˙̂
l = f2

˙̂
l = f1

r ≥ b

Fig. 9. The hybrid automaton modelH of a Skype flow accessing a drop
tail queue

Proof: Let us focus on the systemΣ3 which holds when
the queue is full, i.e. when congestion occurs. By imposing
˙̂
l = 0 we obtain the equilibrium(l̂∗, q∗) which corresponds
to the autonomous system obtained when the steady state
inputs areb∗, L∗ andf∗:

1

τ
−

1

τ
l̂∗ −

1

τ

b∗

L∗

1

1 − l̂∗
1

1 + f∗
= 0 ⇒

l̂∗ = 1 −

√

b∗

L∗(1 + f∗)

It is worth to notice that̂l∗ ∈ [0, 1] since the inequality
b∗ < L∗(1 + f∗)) holds.

In order to prove the stability of the equilibrium we
employ the direct Lyapunov method. By using the Lyapunov
function V (l̂) = 1

2 (l̂ − l̂∗)2 we obtain after straightforward
computations:

V̇ (l̂) = −
1

τ

(l̂ − l̂∗)2(2 − l̂ − l̂∗)

1 − l̂

which is definite negative sincêl ∈ [0, 1].
Lemma 2:The systemΣ1 has a unique equilibrium point:

l̂∗ = 0 ; q∗ = 0 (7)

when b∗ > (1 + f∗)L∗ which is globally asymptotically
stable.

Proof: The lemma is proved by observing thatΣ1 is
a linear system with one eigenvalue that is always strictly
negative.

Lemma 3:The hybrid automatonH has a sink stateΣ3

if b∗ < (1 + f∗)L∗ and a sink stateΣ1 if b∗ > (1 + f∗)L∗.
Proof: Let us consider the first part of the proposition

which assumesb∗ < (1+f∗)L∗. The proof starts by showing
that for any initial condition(l̂0, q0), the state dynamics of the
hybrid automaton enters the stateΣ3 and remains indefinitely
in this state, i.e.Σ3 is a sink state. To this purpose we find
the reachability set ofH.

Let us fook at Figure 10 (a) that shows the phase plane
X = {l̂, q : 0 ≤ l̂ ≤ 1, 0 ≤ q ≤ qM} partitioned in two
zonesZ1 andZ2 depending on the sign oḟq. It results that if
r > b then the queue builds up (zoneZ1 = {(l̂, q) ∈ X : l̂ <
1− b∗/(1+f∗)L∗, q 6= qM}) otherwise the queue is drained
(zoneZ2 = {(l̂, q) ∈ X : l̂ > 1 − b∗/(1 + f∗)L∗, q 6= 0}).
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Fig. 10. Qualitative phase portrait of the Skype state spacemodel when
(a) b < (1 + f)Li or (b) b > (1 + f)Li

It is easy to show that if we initializeH in the stateΣ1

(the queue is empty andr < b) the state evolution is given
by:

l̂ = l̂0e
−

t

τ (8)

q = 0 (9)

where the initial condition is(l̂, 0). The state ofH remains
in Σ1 provided thatr < b i.e. whenl̂ > 1− b∗/(1 + f∗)L∗.
The state switches toΣ2 at the time:

t1→2 = −τ log

(

1 −
b∗

(1 + f∗)L∗

)

It is worth to notice that the switching timet1→2 is always
positive, so that we can conclude that if we initializeH in
theΣ1 state, the only reachable state isΣ2. Moreover, since
the state is now in the regionZ1 the queue must build up, so
that the only reachable state fromΣ2 is now Σ3. Thus, we
can conclude that ifH is initialized in Σ1 the only possible
evolution of the state isΣ1 → Σ2 → Σ3.

Let us now focus on the states that can be reached starting
from Σ2. We will show that if we initializeH with Σ2, that
is (l̂0, q) ∈ Z1 ∪Z2 the state of the hybrid automatonH can
go either toΣ1 or to Σ3. The evolution of the state is given
by:

l̂ = l̂0e
−

t

τ (10)

q = q0 − kτ l̂0(1 − e−
t

τ ) + t(k − b∗) (11)

where we have definedk = L∗(1 + f∗) for sake of brevity.
It is very easy to show that if the initial condition belongs
to Z1 for sure there is no way for the state to finish inΣ1

(the queue must build up) so that the only state that can be
reached isΣ3 (full queue). Let us now start from the initial
condition inZ2: now two different evolutions of the hybrid
automaton are possible: the state can be either go inΣ1 then
back toΣ2 and then toΣ3 or either go directly inΣ3. It is
simple but lengthy to show that the state follows the path
Σ2 → Σ1 → Σ2 → Σ3 if and only if the initial condition
belongs to the set:

P = {(l̂, q) ∈ Z2 : q < −τ(k − b∗)(1 + log l̂) +

+kτ l̂ + τ(k − b∗) log(1 −
b∗

k
)}

otherwise the state of the hybrid automaton will follow the
path Σ2 → Σ3. In either the cases if the hybrid automaton
starts fromΣ2 the state will end inΣ3 that is, the queue fills
up and packet losses occur.

In order to conclude the first part of the proof we need
to show that if we initialize the system inΣ3 the state of
H will remain in Σ3. In Lemma 1 we have shown thatΣ3

has one equilibrium point that is asymptotically stable so
that the trajectories are attracted by the equilibrium. We can
conclude that if we initialize the automaton in theΣ3 state
the evolution of the system will always be inΣ3 and will
not be able to switch to another state.

The second part of the proof which states thatΣ1 is a
sink state ifb∗ > (1 + f∗)L∗ follows the same arguments
we have developed in the first part and it is omitted due to
space limitation.

Proposition 1: By considering the equilibrium inputsb∗,
L∗ andf∗ the hybrid automaton shown in Figure 9 has the
following equilibrium state:

l̂∗ = 1 −

√

b∗

L∗(1 + f∗)
; q∗ = qM (12)

if b∗ < (1 + f∗)L∗ and:

l̂∗ = 0 ; q∗ = 0 (13)

otherwise. Considered the system delay free system (T2 = 0)
both the equilibria are asymptotically stable.

Proof: From Lemma 3 we know that ifb∗ < (1+f∗)L∗

thenΣ3 is a sink, so that for any initial condition(l̂0, q0) ∈
X the state must end inΣ3. Moreover, in Lemma 1 we
proved thatΣ3 is an asymptotic stable equilibrium (12), so
that we can conclude that for any(l̂0, q0) ∈ X the state will
asymptotically converge to (12).

If we assumeb∗ > (1+f∗)L∗ following similar arguments
we can conclude that for any any(l̂0, q0) ∈ X the state will
asymptotically converge to (13).

Proposition 2: The controller employed by Skype is not
able to counteract congestion episodes unlessL∗(1 + f∗) <
b∗.

Proof: Since we are under the hypotesis of Proposition
1, we know that (12) is an asymptotically stable equilibrium
for H. Therfore by considering (3) the steady state value of
the overflow rate is given by:

o∗ = (1 − l̂∗)L∗(1 + f∗) − b∗

Now by substituting (12) in the equation written above, we
obtain:

o∗ =
√

b∗L∗(1 + f∗) − b∗

that is greater than zero ifb∗ < L∗(1 + f∗). In other
terms, under congestion, the evolution of the system will be
described byΣ3 (Lemma 3) and thus the queue will be full
(q∗ = qM ) and the overflow rate will be persistent (o∗ > 0).

Remark 1:The steady state value of the loss rateo∗ does
not depend on the time constantτ of the filter.



VI. CONCLUSIONS AND FURTHER WORK

This paper proposes a dynamic switching model of the
congestion control algorithm implemented by the Skype
VoIP application. At our best knowledge, this is the first
attempt aiming at developing such a model because the
Skype protocol behaviour is hidden by AES encryption.

By setting up an experimental testbed we have conjectured
and verified what are the inputs and how they affect the
Skype sending behaviour. Main findings are: (1) Skype does
not implement a delay based control; (2) the sending rate
matches the available bandwidth with a finite error; (3) the
loss ratio is the main driver of the input rate; (4) the encoder
selects the encoding rate over a finite set of levels by taking
into account a metric that depends on the loss rate.

As a further work we plan to relax the assumptionT2 = 0
in the proof of Proposition 1.
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