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ABSTRACT
Multimedia content feeds an ever increasing fraction of the
Internet traffic. Video streaming is one of the most impor-
tant applications driving this trend. Adaptive video stream-
ing is a relevant advancement with respect to classic pro-
gressive download streaming such as the one employed by
YouTube. It consists in dynamically adapting the content
bitrate in order to provide the maximum Quality of Experi-
ence, given the current available bandwidth, while ensuring
a continuous reproduction. In this paper we propose a Qual-
ity Adaptation Controller (QAC) for live adaptive video
streaming designed by employing feedback control theory.
An experimental comparison with Akamai adaptive video
streaming has been carried out. We have found the fol-
lowing main results: 1) QAC is able to throttle the video
quality to match the available bandwidth with a transient
of less than 30s while ensuring a continuous video repro-
duction; 2) QAC fairly shares the available bandwidth both
in the cases of a concurrent TCP greedy connection or a
concurrent video streaming flow; 3) Akamai underutilizes
the available bandwidth due to the conservativeness of its
heuristic algorithm; moreover, when abrupt available band-
width reductions occur, the video reproduction is affected
by interruptions.

Categories and Subject Descriptors
C.2.5 [Local and Wide-Area Networks]: Internet; H.5.1
[Multimedia Information Systems]: Video

General Terms
Design, Performance, Experimentation

Keywords
Adaptive Video Streaming, quality feedback control, quality
adaptation controller
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1. INTRODUCTION
Nowadays, the wide availability of wired and wireless broad-

band connections is enabling ubiquitous multimedia appli-
cations over the Internet, such as video streaming, personal
video broadcasting, IPTV, and videoconferencing, at video
resolutions that can scale up to full high definition (full HD,
1920x1080) at frame rates up to 30 fps. Such rich video
contents require a compressed bitstream in the order of 10
Mbps along with adequate processing resources at the client
for decoding. Nevertheless, the Internet is becoming more
and more accessible to a wide spectrum of devices: if desk-
tops users are normally equipped with large screens, good
processing resources, and wired broadband connections, mo-
bile users typically use small screens devices, with limited
processing resources and wireless cellular connections that
are characterized by variable link characteristics.

Thus, a key challenge is to provide the user with a seam-
less multimedia experience at the maximum Quality of Ex-
perience (QoE) that can be obtained given the available de-
vice and network resources. To this purpose, multimedia
content must be made adaptive. It is important to notice
that the adaptation process should account take into ac-
count a wide set of variables such as user screen resolution,
CPU load, network available bandwidth, power consump-
tion, some of which are time-varying. In this paper we focus
on adaptation to network available bandwidth.

Adaptive (live) video streaming represents a relevant ad-
vancement wrt classic progressive download streaming such
as the one employed by YouTube.

In classic progressive download streaming, the video is de-
livered as any data file using greedy TCP connections. The
video stream is buffered at the receiver for a while before
the playing is started so that short-term mismatches be-
tween the video bitrate and the available network bandwidth
can be absorbed and video interruptions could be mitigated.
Nevertheless, if the mismatch persists the buffer could even-
tually get empty and playback interruptions could occur af-
fecting the user experience.

On the other hand, with adaptive streaming the video
source is adapted on-the-fly so that the user can watch
videos at the maximum bitrate that is allowed by the time-
varying available bandwidth and by the device resources.

In this paper we focus on a particular adaptive stream-
ing approach that is the stream-switching technique: the
server encodes the video content at different bitrates and it
switches from one video version to another based on client
feedbacks such as the measured available bandwidth. This
approach is employed by Apple HTTP live streaming, Mi-



crosoft IIS server, Adobe Dynamic Streaming, Akamai HD
Video Streaming, and Move Networks. In particular, we
present a Quality Adaptation Controller (QAC), which has
been designed using feedback control, to drive stream-switching
for adaptive live streaming applications. The advantages of
using a control theoretical approach to design the controller
as opposed to a heuristic-based design is a cleaner design
that can be not only experimentally tested but also mathe-
matically analyzed.

The rest of the paper is organized as follows: Section 2
provides a brief review of the different adaptive streaming al-
gorithms proposed in the literature along with the main fea-
tures of the adaptive streaming algorithms employed in com-
mercial products; Section 3 summarizes the results obtained
by an experimental investigation of Akamai HD Video Stream-
ing; in Section 4 we propose the Quality Adaptation Con-
troller (QAC) and in Section 5 we experimentally compare
QAC with the Akamai HD Video Streaming; finally, Section
6 concludes the paper.

2. RELATED WORKS
In this Section we provide a review of the relevant litera-

ture on adaptive streaming and then we focus on the most
known commercial products providing adaptive streaming
services.

2.1 Adaptive streaming techniques
In the last decade a vast literature on video streaming

has been produced. Main topics that have been investigated
are: 1) the design of transport protocols specifically tailored
for video streaming, 2) adaptation techniques, 3) scalable
codecs.

Concerning the first topic, several transport protocols de-
signed for video streaming have been proposed, such as the
TCP Friendly Rate Control (TFRC) [7], Real Time Stream-
ing Protocol (RTSP) [14], Microsoft Media Services (MMS),
Real Time Messaging Protocol (RTMP) [3]. Some of the
mentioned protocols have been employed in commercial prod-
ucts such as RealNetworks, Windows Media Player, Flash
Player. Even though TCP has been regarded in the past
as inappropriate for the transport of video streaming proto-
cols, recently it is getting a wider acceptance and it is being
used with the HTTP. This is mainly due to the following
reasons: i) Internet applications are rapidly converging on
web browsers; ii) HTTP-based streaming is cheaper to de-
ploy since it employs standard HTTP servers [17]; iii) TCP
has built-in NAT traversal functionalities; iv) it is easy to
be deployed within Content Delivery Networks (CDN) [17];
v) TCP delivers most part of the Internet traffic and it is
able to guarantee the stability of the network by means of
an efficient congestion control algorithm [15].

In [16] the authors develop analytic performance mod-
els to assess the performance of TCP when used to trans-
port a live video streaming source without the use of quality
adaptation. The theoretical results, obtained considering a
constant bit rate (CBR) source and supported by an ex-
perimental evaluation, suggest that in order to achieve good
performance in terms of startup delay and percentage of late
packet arrivals, TCP requires a network bandwidth that is
roughly two times the video bit rate. It is important to stress
that such bandwidth over-provisioning would systematically
waste half of the available bandwidth.

For what concerns adaptation techniques, different ap-

proaches have been proposed in the literature so far. The
issue here is how to automatically throttle the video quality
to match the available resources (network bandwidth, CPU)
so that the user receives the video at the maximum possible
quality. The proposed techniques to adapt the video source
bitrate to the variable bandwidth can be classified into three
main categories: 1) transcoding-based, 2) scalable encoding-
based, 3) stream-switching (or multiple-bitrate - MBR). Fig-
ure 1 shows a schematic representation of each considered
technique. In the figure, the blocks represented in gray are
those requiring on-the-fly per-client processing and the (k)
index refers to variables pertaining to the k-th client access-
ing the same video content. In particular, encoders can be
considered as the most CPU-consuming function, whereas
controllers generally require much less processing capacity.

The transcoding-based [12] approach (see Figure 1(a)),
consists in adapting the video content to match a specific
bitrate by means of on-the-fly transcoding of the raw con-
tent. These algorithms can achieve a very fine granularity
by throttling frame rate, compression, and video resolution.
Nevertheless, this comes at the cost of increased processing
load and poor scalability, due to the fact that transcoding
has to be done on a per-client basis. Another important
issue is that such algorithms are difficult to be deployed in
CDNs.

Another important class of adaptation algorithms (see
Figure 1(b)) employs scalable codecs such as H264/MPEG-4
AVC [9, 10]. Both spatial and temporal scalability can be
exploited to adapt picture resolution and frame rate without
having to re-encode the raw video content. With respect to
transcoding-based approach, scalable codecs reduce process-
ing costs since the raw video is encoded once and adapted
on-the-fly by exploiting the scalability features of the en-
coder. To be used with CDNs, this approach requires spe-
cialized servers implementing the adaptation logic. Also this
approach is difficult to be used with CDNs since the adap-
tation logic requires to be run on specialized servers and
content cannot be cached in standard proxies. Another is-
sue is that the adaptation logic depends on the employed
codec, thus restricting the content provider to use only a
limited set of codecs.

Stream-switching algorithms (see Figure 1(c)) encode the
raw video content at increasing bitrates resulting into N
versions, i.e. video levels; an algorithm dynamically chooses
the video level that matches the user’s available bandwidth;
those algorithms minimize the processing costs since, once
the video is encoded, no further processing is required in
order to adapt the video to the variable bandwidth [17, 1,
11, 2, 8]. Another important advantage of such algorithms
is that they do not rely on particular functionalities of the
employed codec and thus can be made codec-agnostic. The
disadvantages of this approach are the increased storage re-
quirements and the fact that adaptation is characterized by
a coarser granularity since video bitrates can only belong to
a discrete set of levels.

2.2 Stream-switching adaptive video stream-
ing commercial products

Stream-switching, or Multiple Bit-Rate (MBR) stream-
ing, is gaining momentum since leading commercial media
players are preferring it to the other streaming approaches.

IIS Smooth Streaming [17] is a live adaptive streaming
service provided by Microsoft. The streaming technology is
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Figure 1: Adaptive streaming techniques

offered as a web-based solution requiring the installation of a
plug-in that is available for Windows and iPhone OS 3.0. IIS
Smooth Streaming is codec agnostic and employs a stream-
switching approach where different video versions can be
encoded with configurable bitrates and video resolutions up
to 1080p. In the default configuration, the video is encoded
in seven layers ranging from 300 kbps up to 2.4 Mbps.

Adobe Dynamic Streaming [8] is a web-based adaptive
streaming service developed by Adobe that is available to
all devices running a browser with Adobe Flash plug-in.
The server stores several streams at different quality and
resolution and switches among them during the playback,
in order to match user bandwidth and CPU. The service is
provided using the RTMP streaming protocol [3]. The sup-
ported video codecs are H.264 and VP6, which are included
in the Adobe Flash plug-in.

Apple has recently released a client-side HTTP Adaptive
Live Streaming solution [11]. The server segments the video
content into several pieces with configurable duration and
video quality. The server exposes a playlist (.m3u8) con-
taining all the available video segments. The client down-
loads consecutive video segments and it dynamically chooses
the video quality by using an undisclosed algorithm. Apple
HTTP Live Streaming employs H.264 codec using a MPEG-
2 TS container and it is available on any device running
iPhone OS 3.0 or later (including iPad), or any computer
with QuickTime X or later installed.

Move Networks provides live adaptive streaming service
to several TV networks such as ABC, FOX, Televisa, ESPN
and others. A plug-in, available for the most used web
browsers (Windows and Mac OS X) has to be installed to
access the service. Move Networks employs VP7, a video
codec developed by On2, a company that has been recently
acquired by Google. Adaptivity to available bandwidth is
provided using the stream-switching approach. Five differ-
ent versions of the same video are available at the server
with bitrates ranging from 100 kbps up to 2200 kbps.

Hulu1 offers on demand TV shows and movies in the USA.
In 2010 Hulu has launched a new video player that im-
plements adaptivity by employing the stream-switching ap-
proach. The adaptation algorithm does not change the video
frame rate, whereas it sets the video resolution to match the
current user available bandwidth.

3. AKAMAI ADAPTIVE STREAMING
In this Section we summarize and significantly extend the

results obtained in a recent experimental investigation of the
Akamai HD Video Streaming (AHDVS) service [5].

1http://www.hulu.com
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Figure 2: Client-server time sequence graph: thick
lines represent video data transfer, thin lines repre-
sent HTTP requests sent from client to server

3.1 Client-server protocol
AHDVS employs HTTP connections to stream data from

the server to the client. The adaptation algorithm is exe-
cuted at the client in a Flash application. By analyzing the
traffic between the Akamai server and the client we have ob-
served that the client issues a number of HTTP requests to
the server throughout all the duration of the video stream-
ing. Figure 2 shows a typical time sequence graph of the
HTTP requests sent from the client to the Akamai server.

At first, the client connects to the Akamai server [1], then
a Flash application is loaded and a number of videos are
made available to the client. When the user clicks on the
thumbnail (1) of the video he is willing to play, a GET
HTTP request is sent to the server which points to a SMIL2

compliant file. In the SMIL file the base URL of the video,
the available video levels, and the corresponding encoding
bit-rates are provided.

After that, the client parses the SMIL file (2) to recon-
struct the complete URLs of the available video levels and
selects the corresponding video level based on the qual-
ity adaptation algorithm. All the videos available on the
demo website are encoded at five different bitrates as shown
in Table 1. In particular, the video level bitrate l(t) can
assume values in the discrete set of available video levels
L = {l0, . . . , l4}. Video levels are encoded at 30 frames
per second (fps) using H.264 codec with a group of picture
(GOP) of length 36, so that two consecutive I frames are
1.2s apart. This means that, since a video switch can oc-

2
http://www.w3.org/TR/2005/REC-SMIL2-20050107/



Video Bitrate Resolution
level (kbps) (width×height)

l0 300 320x180
l1 700 640x360
l2 1500 640x360
l3 2500 1280x720
l4 3500 1280x720

Table 1: Set of available video levels L

Command Args Occurrence (%)

c1 throttle 1 ˜80%
c2 rtt-test 0 ˜15%
c3 SWITCH UP 5 ˜2%
c4 BUFFER FAILURE 7 ˜2%
c5 log 2 ˜1%

Table 2: Commands issued by the client to the
streaming server via the cmd parameter

cur only at the beginning of a GOP, video levels can change
only each 1.2s. Finally, the audio is encoded with Advanced
Audio Coding (AAC) at 128 kbps bitrate.

After the SMIL file gets parsed, at time t = t0 (3), the
client issues the first POST request specifying several pa-
rameters. Among those, the most important parameters
are cmd, that specifies a command the client issues on the
server, and lvl1, that specifies several feedback variables
F(t) such as: 1) the receiver buffer size q(t), 2) the receiver
buffer target qT (t), 3) the received video frame rate f(t), 4)
the estimated bandwidth B(t), 5) the received goodput r(t),
6) the current received video level bitrate l(t).

At time t = t0, the quality adaptation algorithm starts.
For a generic time instant ti > t0 the client issues commands
via HTTP POST requests to the server in order to select the
suitable video level. It is worth to notice that the commands
are issued on a separate TCP connection that is established
at time t = t0.

Table 2 reports the possible commands ci that the client
can issue on the servers along with the number of argu-
ments and the occurrence percentage. The first two com-
mands are issued periodically, throttle with a median inter-
departure time of about 2s and rtt-test with a median
inter-departure time of about 11s. On the other hand, log,
SWITCH UP and BUFFER FAILURE are commands triggered on
the occurrence of a particular event.

In [5] we have shown that the throttle command spec-
ifies a single argument, the throttle percentage T (t), that it
is used to control the receiver buffer level q(t) as we will
discuss in Section 3.2. The rtt-test command is issued to
periodically actively probe for the available bandwidth and
the round trip time R(t) (RTT) of the connection.

Finally, the two event-based commands SWITCH UP and
BUFFER FAILURE are sent from the client to ask the server to
respectively switch up or down the video level l(t).

3.2 The control system
Figure 3 shows a block diagram of the control architec-

ture employed by AHDVS. The server is connected to the
client through an Internet connection characterized by a for-
ward connection delay τf and a backward connection delay
τb. Figure 3 shows that the three main components of the
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Figure 3: A block diagram of the control architec-
ture employed by AHDVS

control loop, i.e. measurement, adaptation controller, and
actuator, are connected through the Internet so that the
control loop is affected by an overall delay τ = τf + τb.

The client receives the video flow at level l(t) ∈ L over an
HTTP connection at a rate r(t). The received video is stored
in a playout buffer, whose instantaneous length is q(t), which
is drained by the decoder at the current received video level
l(t). A measurement module feeds the values of the buffer
length q(t), the received goodput r(t), the bandwidth B(t),
and the decoded frame rate f(t) to the adaptation controller.

The adaptation controller is made of two modules: 1)
a playout buffer level controller whose goal is to drive the
buffer length to a target length; 2) a stream-switching logic
that selects the appropriate video level to be streamed by
the server.

In [5] we have shown that the control law implemented by
Akamai to regulate the buffer length q(t) is a proportional
controller that takes the error qT (t)− q(t) as the input and
whose output is the throttle percentage T (t):

T (t) = max

(
(1 +

qT (t)− q(t)
qT (t)

)100, 10

)
(1)

The throttle percentage T (t) is used to set the rate r(t) at
which the Akamai server feeds the TCP socket buffer with
the current video level l(t) as follows:

r(t) = l(t)
T (t)

100
(2)

The rationale of controlling r(t) is to induce, on average, a
TCP sending rate that is equal to r(t). This means that
when the throttle percentage is above 100% the server can
stream the video at a rate that is above the encoding bitrate
l(t). It is important to stress that, in the case of live stream-
ing, it is not possible for the server to supply a video at a
rate that is above the encoding bitrate for a long period,
since the video source is not pre-encoded.

By looking at (1) we find that when the buffer length
q(t) matches the target buffer length qT (t), the throttle per-
centage T (t) is equal to 100% and r(t) matches l(t). On
the other hand, when the error qT (t) − q(t) increases, T (t)
increases accordingly in order to allow r(t) to increase so
that the buffer can be filled quickly. Since (1) implements a
simple proportional controller on the buffer length, the q(t)
matches qT (t) with an offset at steady state [6].

Let us now focus on the stream-switching logic that is
a heuristic-based controller that decides which video level
l(t) ∈ L has to be sent by the server, based on the esti-
mated bandwidth, the current video level, the playout buffer
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length, and the frame rate. In particular, and based on the
debug information provided by the Akamai Client and on
the experiments we have run, the stream-switching heuris-
tic works as follows.

The client periodically issues rtt-test commands that
have the effect of setting at the server a throttling percent-
age of 500%, thus asking the server to periodically send the
video in greedy mode. In this way Akamai actively probes
for extra available bandwidth and estimates the RTT R(t)
under congestion. Based on the estimated value of the RTT,
the client computes a safety factor S. By parsing the debug
information in order to collect the pairs (R(t), S(t)) shown
in Figure 4, it was possible to run a linear regression over
the dataset which yielded to the following static linear model
(R(t) is expressed in seconds):

f(R(t)) = 2.5R(t) + 0.15

We have observed that when R(t) > 0.1s the safety factor
remains set to 0.4, whereas when R(t) < 0.02s, it is set to
0.2. Thus, we can conclude that the complete model for
S(R(t)) is the following:

S(R(t)) =


0.2 0 < R(t) < 0.02s

2.5R(t) + 0.15 0.02s ≤ R(t) ≤ 0.1s

0.4 R(t) > 0.1s

(3)

For each video level li ∈ L a high threshold LHi and a
low threshold LLi are maintained:

LHi (t) = li · (1 + S(t)) ; LLi = li · 1.2 (4)

A switch up (SWITCH UP) to a higher video level li is enabled
only if B(t) > LHi (t), which means that if, for instance,
the RTT is above 0.1 s and thus S(R(t)) = 0.4, in order
to switch to level li the estimated bandwidth must be at
least 40% higher than li. This seems to be a conservative
approach that leads to network underutilization and, as a
consequnece, to a reduced QoE.

The switch down event occurs when:

q(t) < qL(t) (5)

where qL(t) is another threshold that is smaller than the
queue target3 qT (t). When (5) holds, a BUFFER FAILURE is
sent and the new video level li < l(t) is selected. In partic-
ular, the highest video level li ∈ L satisfying the following
condition:

B(t) > 1.2 · li = LLi
3
The identification of qL(t) has not been carried out.
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Figure 5: QAC control architecture

is selected. Thus, in to select the level li, the currently
estimated bandwidth B(t) must be at least 20% above li.
Moreover, in [5] we have shown that when SWITCH UP and
BUFFER FAILURE commands are sent from the client, the
actuator, which is located at the server, takes a delay of
τsu ' 14s and τsd ' 7s respectively, to actuate these com-
mands.

Finally, it is worth noting that the overall system ex-
hibits a very complex dynamics due to the interaction of two
closed-loop dynamics: the stream-switching logic, which has
been designed using heuristic arguments, and the buffer level
controller. As a consequnce, it is very complex to develop
a mathematical analysis as well as to tune control variables
to satisfy key design requirements such as settling times and
steady state errors.

4. QUALITY ADAPTATION CONTROLLER
In this Section we propose a Quality Adaptation Controller

(QAC) for adaptive live video streaming that aims at pursu-
ing the following goals: 1) maximize the QoE by delivering
the best quality that is possible given the network avail-
able bandwidth while minimizing playback interruptions; 2)
rigorous design of the controller by employing the control
theory; 3) high scalability in terms of processing costs; 4)
CDN-friendly design, i.e. the algorithm can be easily de-
ployed on CDNs; 5) codec-agnostic, i.e. the service provider
has the freedom to choose any codec.

In order to pursue the goals 3), 4), and 5) we choose
the stream-switching approach and we employ the standard
HTTP streaming over TCP. For what concerns the goals 1)
and 2) we employ feedback control theory to design a con-
troller that throttles the video level l(t) to be streamed with-
out using any heuristics. This provides the key advantage
of getting a predictable system dynamics that can fulfill re-
quired design features such as settling time and steady state
errors [6].

4.1 The control system
Figure 5 shows the architecture of the proposed streaming

server. The first important difference wrt the control archi-
tecture employed by Akamai (Figure 3) is that measuring,
control and actuation take place at the server so that the
control loop is not affected by delays and does not require
explicit feedback from the client. This architecture provides
the following advantages: 1) simplicity of the player : being
the control centralized at the server, the player at the client
has the only task of decoding and playing the stream; more-
over, when a new version of the control algorithm is designed
and installed at the server, there is no need to update the
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player; 2) effectiveness of the controller : by avoiding delays
in the control loop the controller can provide faster dynam-
ics while retaining stability [6].

The controller works as follows: it takes as input the queue
length q(t) of the sender buffer that is placed at the server,
and it selects the video level li ∈ L . The selected video level
is temporally stored at the sender buffer and is then sent
to the client via a TCP connection. The received stream
is buffered at the client that decodes and plays the video
content.

Figure 6 shows a block diagram of the feedback control
system designed to throttle the video level l(t). In the follow-
ing s ∈ C denotes the Laplace variable and F (s) = L{f(t)}
denotes the unilateral Laplace transform of the real valued
function f(t).

The input of the system qT is the set-point, or threshold
value, for the sender buffer length q(t).The controller goal
is to track a queue length qT > 0 so that the TCP sender
buffer is always full and can fill the communication pipe.

The controller, which can be described by its transfer
function Gc(s), takes as input the error e(t) = qT − q(t)
and outputs the control signal u(t) that is the bitrate the
encoder should set to match the available bandwidth b(t).
In our case, since we employ the stream-switching approach,
the video bitrate will belong to the discrete set of available
video levels L . This can be modelled through a quantizer,
which is a static element that takes as input u(t) and se-
lects the highest video level li that is less then u(t). Finally,
the sender buffer, which can be modelled by the integrator
1/s, is filled at a rate l(t) and it is drained by the available
bandwidth at the rate b(t). It is worth to notice that the
available bandwidth b(t) is modelled as a disturbance [13].

The effect of the quantizer is to add a quantization error
dq(t) = l(t) − u(t) to u(t). This is equivalent to consider
dq(t) as a disturbance acting on b(t) giving the total equiv-
alent disturbance deq(t) = b(t) + dq(t). In this way we are
able to take the quantizer out of the control loop and we
can compute the transfer function from the input qT to the
output q(t) as follows:

G0(s) =
Q(s)

QT (s)
=

Gc(s)
1
s

1 +Gc(s)
1
s

(6)

We choose a proportional integral (PI) controller:

Gc(s) =
U(s)

E(s)
= Kp +

Ki

s
(7)

since it is able to reject step-like disturbances b(t) and it
is very simple to be discretized and implemented in a soft-
ware module. The integral action of the controller ensures
that the video level l(t) matches on average the available
bandwidth b(t).
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Figure 7: The QAC adaptive streaming server ar-
chitecture

By substituting (7) in (6) it turns out:

G0(s) =
Kps+Ki

s2 +Kps+Ki
(8)

Thus, the closed loop system is a second order system with
one zero. In order to tune the controller, we impose the
damping factor of the system (8) to be δ =

√
2/2 [6] and a

natural frequency ωn =
√
Ki = 0.1886rad

s
that corresponds

to a system bandwidth of around 0.06 Hz and a 2% settling
time of Ts = 4

δωn
= 30 s. This choice is made in order to

limit the switching frequency between different video levels.
The gains of the PI turn out to be Ki = 0.0356 and Kp =
0.2667.

In the time domain the control law is:

u(t) = L−1{Gc(s)E(s)} = Kpe(t) +Ki

ˆ t

0

e(ξ)dξ (9)

In order to implement (9) we need to discretize the control
law with a sampling time ∆T :

u(tk) = Kpe(tk) +Ki

k∑
j=0

∆Te(tj) (10)

We choose a sampling time ∆T = 0.5s that is 1/60th of
the settling time Ts. In the following subsection we provide
the implementation details of the adaptive streaming server
using the QAC.

4.2 Implementation of the adaptive streaming
server

The adaptive streaming server is written in Python and
developed using the Twisted4 libraries. A schematic rep-
resentation of the proposed streaming server is shown in
Figure 7. The server contains an audio/video transcod-
ing engine (Encoder Module) developed using GStreamer5

and FFMpeg6 libraries. The encoder module takes as in-
put a raw or pre-encoded audio/video file and outputs a set
of files transcoded at various bitrates and resolutions. We
used the same levels of AHDVS as shown in Table 1 with
a frame rate equal to 30 fps. We employ a fixed Group of
Picture (GOP) of 30 frames which is equal to 1s of video
stream. For each transcoded file, the encoder module stores
an index file (.index) containing the file position and the
timestamp of each encoded GOP. We used a fixed GOP

4
http://twistedmatrix.com/

5
http://gstreamer.org/

6
http://www.ffmpeg.org/



Akamai
HD Video
Server

Receiver
TCP

Sender
TCP

Internet

QAC
Server

Web
Browser

Measurement
point

Receiving Host

NetEm

Figure 8: Testbed employed in the experimental
evaluation

encoder setting in order to simplify the stream switch be-
tween video levels. Moreover, the server integrates also a
Producer Module, which is a simple HTTP server. When
a client connects to the server, it sends a GET HTTP re-
quest specifying the stream unique identifier it wants to play.
The producer replies with a HTTP response and starts to
send the video stream content reading from the storage at a
configured start level7 l(0) = l̄. Moreover, the producer con-
tinuously provides the current queue level q(t) to the QAC
module. When a video level switch occurs, the producer
selects the corresponding input file from the storage, it per-
forms a file seek operation to the current sent time position
using the information contained in the .index file and then
it feeds the data to the client. The switch operation can be
performed only at GOP boundaries in order to ensure the
correct decoding by the client.

The adaptive streaming server supports every encoding
format provided by GStreamer/FFMpeg libraries. In this
paper, in order to make a fair comparison with AHDVS, we
encoded the video using H.264 codec and MP3 audio muxed
into FLV container.

It is worth noticing that the producer and the QAC mod-
ules are independent from the encoding profile used. Finally,
we stress that the client can be not only an Adobe Flash ap-
plet, but also any video player that supports the same codec
employed by the server. A buffering time of 15s at the client
side is recommended in order to avoid interruptions.

5. EXPERIMENTAL EVALUATION
In this section we carry out a comparison between the

Akamai HD video server and the proposed Quality Adapta-
tion Controller (QAC) by employing the testbed shown in
Figure 8. To run the experiments, we have employed the
video sequence “Elephant’s Dream”8 since its duration is
long enough for a careful experimental evaluation. In order
to perform a fair comparison, the video sequence streamed
with the QAC has been encoded using the x264 codec and
the same discrete set of video levels employed by AHDVS
(see Table 1). The receiving host is an Ubuntu Linux ma-
chine running 2.6.32 kernel equipped with NetEm, which is a
kernel module that, along with the traffic control tools avail-
able on Linux kernel, allows downlink channel bandwidth
and delays to be set. In order to perform traffic shaping
on the downlink we have used the Intermediate Functional
Block pseudo-device IFB9.

The receiving host was connected to the Internet through
our campus wired connection. It is worth to notice that,

7
In this paper we used a start video level l(0) = l1

8
http://orange.blender.org/

9
http://linuxfoundation.org/collaborate/workgroups/networking/ifb

before running any experiment, we carefully checked that
the available bandwidth was well above 4 Mbps, which is
the maximum value of the bandwidth we set in the traffic
shaper. The measured RTT between our client and the Aka-
mai server was in the range 10ms to 30ms. All measurements
have been taken after the traffic shaper (as shown in Figure
8) and collected by sniffing the traffic on the receiving host
with tcpdump. For what concerns AHDVS, the dump files
have been post-processed and parsed using a Python script
to obtain the figures that we report in the following.

The receiving host runs an iperf server (TCP Receiver)
in order to receive TCP greedy flows sent by an iperf client
(TCP Sender).

Four different scenarios have been considered in order to
investigate the dynamic behaviour of the two considered
quality adaptation algorithms: 1) one video stream over a
bottleneck link whose available bandwidth changes following
a step function with minimum value of 500 kbps and max-
imum value of 4000 kbps; 2) one video stream over a bot-
tleneck link whose available bandwidth varies as a square
wave with a period of 200s, a minimum value of 500 kbps
and a maximum value of 4000 kbps; 3) one video stream
sharing a bottleneck, whose available bandwidth is equal
to 4000 kbps, with one concurrent TCP flow; 4) two video
streams sharing a bottleneck whose available bandwidth is
equal to 4000 kbps.

In scenarios 1 and 2 abrupt variations of the available
bandwidth occur: such step-like variations of the input sig-
nal are often employed in control theory to evaluate key
features of a dynamic system response to an external input
such as settling time, overshoots and time constants [4]. The
third scenario evaluates the dynamic behaviour of a video
flow when it shares the bottleneck with a greedy TCP flow,
such as in the case of a file download, and it is useful to
investigate the inter-protocol fairness.

Since, due to the use of TCP, the loss rate is small, the
evaluation of the QoE can be inferred by evaluating the in-
stantaneous video level received by the client, i.e., the higher
the received video level l(t) the higher the quality perceived
by the user. For this reason we employ the received video
level l(t) as the key performance index of the system. In
particular, to assess the efficiency of the quality adaptation
algorithm, we introduce the following index of utilization:

η =
l̂

C
(11)

where l̂ is the average value of the video level l(t), C =
min(lM , b) where lM is the maximum video level and b is
the available bandwidth. The index 0 ≤ η ≤ 1 is 1 when
the average value of the received video level is equal to C,
i.e. when the video level exactly matches the bottleneck
available bandwidth.

For each considered scenario we will show the dynamics
of the following variables: the received video level l(t), the
received video rate r(t), the decoded frame rate f(t), and
the receiver buffer length q(t).

5.1 Step-like change of the bottleneck capacity
We start by investigating the dynamic behaviour of the

two quality adaptation algorithms in a simple scenario. The
bottleneck available bandwidth b(t) increases at time t =
50s from a value of Am = 500 kbps to a value of AM =
4000 kbps. It is worth to notice that Am > l0 and AM > l4.
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Figure 9: QAC adaptive video streaming response
to a step change of available bandwidth at t = 50s

In particular, we are interested in assessing the responsive-
ness of the adaptation algorithms in matching the available
bandwidth choosing the adequate video level l(t). Figure
9 and Figure 10 show the dynamics of one QAC and one
AHDVS video flow, respectively.

Let us consider Figure 9(a) that shows the received video
rate r(t) and video level l(t) in the case of QAC: after that
the bandwidth increases at t = 50s, the video level increases
and eventually reaches, at steady state, the maximum video
level l4 after a transient time of around 30s. It is worth
noting that the transient time required for l(t) to match
the available bandwidth b(t) is equal to the settling time
Ts that was set as requirement when the quality controller
was designed (7) (see Section 4). Moreover, Figure 9(b)
shows that the received buffer length is 15s throughout all
the duration of the connection. The decoded frame rate of
the stream oscillates around 30 fps, which proves that there
were no video interruptions during the streaming. Finally,
the efficiency index (11) is 0.93.

Let us now focus on the Akamai video streaming server.
Figure 10(a) shows the dynamics of the video level l(t), the
estimated bandwidth reported by the lvl1 parameter, and
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Figure 10: AHDVS response to a step change of
available bandwidth at t = 50s

the received video rate r(t). In order to show their effect on
the dynamics of l(t), Figure 10(a) also reports the time in-
stants at which BUFFER FAILURE (BF) and SWITCH UP (SU)
commands are issued. The video level is initialized at l0
that is the lowest available version of the video. Neverthe-
less, at time t = 0 the estimated bandwidth is erroneously
overestimated to a value above 3000 kbps and a SWITCH UP

command is sent to the server. The effect of this command
occurs after an actuation delay of τsu = 7.16s (see Section
3) when l(t) is increased to l3 = 2500 kbps, which is the
video level closest to the bandwidth estimated at t = 0.
By setting the video level to l3, which is above the current
available bandwidth Am = 500 kbps, the receiver buffer
starts to drain and it eventually gets empty at t = 17.5s
(see Figure 10(b)). Figure 10(c) shows that during the
time interval [17.5, 20.8]s the playback frame rate is zero,
meaning that the video is paused. At time t = 18.32s, a
BUFFER FAILURE command is finally sent to the server. Af-
ter a delay of about τsd = 16s the server switches the video
level to l0 = 300 kbps that is below the available bandwidth
Am. Even though the heuristic to trigger a video level switch
down (5) should be able in principle to avoid interruptions,
the actuation delay τsd poses a remarkable limitation to the



responsiveness of the quality adaptation algorithm. More-
over, Figure 10(a) shows that the transient time required
by l(t) to reach the maximum video level l4 is around 150s,
which is roughly one order of magnitude higher than the
transient time exhibited by QAC. Finally, in this case the
efficiency index (11) is 0.676 that is well below the value
found in the case of QAC. To conclude, the inefficiency of
AHDVS is largely due to the conservativeness of the safety-
factor S(t) that we discussed in Section 3. In fact, given a
minimum safety factor of S = 0.2, the available bandwidth
required to switch to the level l4 = 3500 kbps according to
(4) turns out to be 4200 kbps that is above AM .

Let us compare the received video rates of QAC and AHDVS
shown respectively in Figure 9(a) and 10(a): if on one hand
the received video rate of QAC is affected by a moderate
burstiness that is typical of a TCP connection, on the other
hand the received rate of AHDVS is affected by remarkable
and persistent oscillations whose amplitude is more than
2Mbps. This is due to the fact that AHDVS dynamics pe-
riodically switches between two states: in the normal state
the video sending rate is bounded by the maximum sending
rate r(t) given by (2), whereas each time a rtt-test com-
mand is issued AHDVS enters the greedy-mode state and for
a short time interval of around 5s the sending rate is limited
by the available bandwidth [5].

In conclusion, this experiment shows that QAC is able
to provide the maximum value of the received video level
that is possible given the available bandwidth with a tran-
sient time of around 30s in accordance with the design re-
quirements given in Section 4. On the other hand, AHDVS
exhibits a very large transient of around 150s, remarkable
oscillations in the received rate r(t), it is not able to provide
the maximum possible QoE to the user, and it is not able
to avoid interruptions.

5.2 Square-wave varying bottleneck capacity
In this experiment we consider abrupt drops/increases of

the bottleneck available bandwidth b(t) which is shaped
as a square-wave function with a period of 200s, a mini-
mum value Am = 500 kbps and a maximum value AM =
4000 kbps. The aim of this experiment is to assess the re-
sponsiveness of the two considered adaptive video stream-
ing services in shrinking the video level l(t) in response to
an abrupt drop of the available bandwidth and to what ex-
tent they are able to guarantee a continuous reproduction of
the video content in the presence of this sudden bandwidth
reduction.

Figure 11(a) shows the dynamics of the video received
rate r(t) and the video level l(t) in response to the avail-
able bandwidth b(t). The figure shows that the QAC al-
gorithm is able to control l(t) so that it properly follows
step increases and decreases in the available bandwidth. In
particular, the transient times required for l(t) to match
bandwidth increases/decreases are less than 20s. Moreover,
Figures 11(b) and 11(c) show that the receiver buffer length
is around 15s and the reproduced frame rate is around 30 fps
during all the experiment, so showing a reproduction with-
out interruptions. During the time intervals with bandwidth
AM = 4000 kbps, the efficiency index was equal to 0.93.

On the other hand, Figure 10 clearly shows that AHDVS
is not able to properly adapt the video level to follow band-
width variations. By considering the dynamics of the video
level l(t) shown in Figure 12(a) we notice two main facts:
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Figure 11: QAC response to a square-wave available
bandwidth with period 200 s

1) when the available bandwidth increases to AM the video
level is increased to l3, which is less than the maximum video
level l4, in around 75s; 2) when bandwidth drops occur the
playback is affected by interruptions as it can be inferred
by considering Figure 12(b) and Figure 12(c). In partic-
ular, when the first bandwidth drop occurs at t = 200s, a
BUFFER FAILURE is sent to the server after a delay of roughly
7s in order to switch down the video level from l3 to l0. After
that, a switch-down delay τsd of 20s occurs and the video
level l(t) is finally switched to l0. Thus, the total delay spent
to correctly set the video level l(t) to match the new value
of the available bandwidth is 38s. Due to this large delay in
setting l(t), the receiver buffer gets empty and the reproduc-
tion of the video is blocked for more than 100s. The same
situation occurs when the second bandwidth drop occurs.
In this case, the total delay spent to correctly set the video
level is 26s. Again, 13s after the second bandwidth drop, an
interruption in the video reproduction occurs. During the
time intervals with bandwidth AM = 4000 kbps, we evalu-
ated a low index of efficiency equal to 0.4, which is less than
half the efficiency obtained by QAC in this scenario.

To summarize, this experiment has shown that the pro-
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Figure 12: AHDVS response to a square-wave avail-
able bandwidth with period 200 s

posed QAC is able to control l(t) to follow step increases
and decreases of the available bandwidth always providing
the user with a continuous reproduction of the video content
at the best QoE. In the case of Akamai HD Video Streaming,
when the available bandwidth suddenly shrinks, the video
reproduction is affected by interruptions.

5.3 One concurrent greedy TCP flow
In this experiment we investigate the performance of the

two quality adaptation algorithms when sharing the avail-
able bandwidth with one greedy TCP flow, such as in the
case of a parallel download session. The available band-
width has been set to a constant value of 4000 kbps, a video
streaming session is started at t = 0, a greedy TCP connec-
tion is started at t = 150s and it is stopped at t = 360s.

Figure 13(a) shows the dynamics of the video level l(t) and
of the video received rate r(t), whereas Figure 13(b) shows
the goodput of the concurrent TCP flow. In the first part of
the experiment, for 0 < t < 150s, l(t) quickly matches the
available bandwidth obtaining an efficiency η = 0.98. After
the greedy TCP flow is started at t = 150s the video level
l(t) is switched down in about 10s and, since the fair share is
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Figure 13: QAC when sharing the bottleneck with
one greedy TCP flow

2000 kbps, l(t) switches between the two closest video levels
l2 = 1500 kbps and l3 = 2500 kbps. In this part of the
experiment the efficiency is 0.99 and, the average goodput
of the greedy TCP flow is 1930 kbps whereas the goodput
obtained by QAC flow is 1910 kbps thus indicating that the
two flows share the available bandwidth fairly. When the
greedy TCP flow is stopped, the video level l(t) is correctly
set to the maximum video level l4 after a transient of 4s.
In this part of the experiment the efficiency of QAC is 0.99.
Finally, Figure 13(c) shows that the receiver buffer length
is always greater than 15s, meaning that no interruptions
occurred during the video reproduction.

Figure 14(a) shows the video level dynamics l(t), the es-
timated bandwidth and the received video rate r(t) in the
case of AHDVS. During the first part of the experiment, i.e.
for t < 150s, apart from a short time interval [6.18, 21.93]s
during which l(t) is equal to l4 = 3500 kbps, the video level
is set to l3 = 2500 kbps. The efficiency index η in this part of
the experiment is 0.74. When the TCP flow joins the bottle-
neck, it grabs the fair bandwidth share of 2000 kbps. Nev-
ertheless, the estimated bandwidth decreases to the correct
value after 9s. After an additional delay of 8s, at t = 167s,
a BUFFER FAILURE command is sent (see Figure 14(a)). The
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Figure 14: AHDVS when sharing the bottleneck
with one greedy TCP flow

video level is shrunk to the suitable value l2 = 1500 kbps
after a total delay of 24s. In this case, this actuation delay
does not affect the video reproduction as it can be inferred
by considering the receiver buffer dynamics shown in Fig-
ure 14(c). However, Figure 14(a) shows that l(t) is further
decreased to l1 = 700 kbps and it is set to steady state
value of l2 at t = 212s. Thus, the transient time spent to
reach the steady state is 62s. In this part of the experiment,
the efficiency index is equal to 0.76, the average goodput
of the greedy TCP flow is 2170 kbps, whereas the goodput
obtained by Akamai flow is 1643 kbps indicating that the
available bandwidth is underutilized. In the third part of
the experiment, after the TCP flow leaves the bottleneck at
time t = 360s, the level is switched up to l3 = 2500 kbps
with a delay of 26s. In this part of the experiment the effi-
ciency is 0.69. Finally, by considering Figure 14(b), we can
observe that the “on-off” dynamics of the sending rate pro-
vided by AHDVS affects the dynamics of the TCP received
rate that shows remarkable oscillations.

5.4 Two concurrent video streaming sessions
In this scenario we evaluate the behaviour of two video

streams that share the same bottleneck whose available band-
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Figure 15: Two QAC adaptive video streaming flows
sharing a bottleneck

width has been set to 4000 kbps. The first video streaming
session is started at t = 0 and after 100s a second video flow
is started. This experiment is aimed at assessing to what
extent two competing flows are able to share in a fair way
the bottleneck. In this experiment the fair share is equal to
2000 kbps.

Figure 15(a) shows the dynamics of the video levels l1(t)
and l2(t) of the first and the second video flow controlled
by QAC. In the first part of the experiment, the first flow
behaves as already shown in the other experiments quickly
setting l1(t) to the maximum video level l4. When the sec-
ond video flow joins the bottleneck at t = 100s, the video
level l1(t) is correctly shrunk to let the second video flow
obtain its fair share. After a transient time of 8s the two
video levels l1(t) and l2(t) start to switch between the two
video levels, l2 = 1500 kbps and l3 = 2500 kbps, that are
closest to the fair share which is 2000 kbps.

Figure 16(a) shows the dynamics of the two video levels
in the case of AHDVS. The figure shows that, when the
second flow joins the bottleneck, it takes 210s for the video
level l1(t) to be set to the correct value l2 = 1500 kbps.
Thus, during this transient the first video flow experiences
a higher video level with respect to the second video flow,
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Figure 16: Two AHDVS flows sharing a bottleneck

indicating that the controller is not able to provide the same
QoE to all the users sharing a bottleneck.

Finally, Table 3 collects the average goodputs g1 and g2
obtained for t > 100s by the first and the second flow re-
spectively for both QAC and AHDVS streaming systems.
The average channel utilization, computed as U = (g1 +
g2)/4000 kbps, obtained by QAC results 10% higer wrt the
one obtained by AHDVS.

6. CONCLUSIONS
In this paper we have presented a Quality Adaptation

Controller (QAC) for a stream-switching adaptive live video
streaming system designed by using feedback control theory.
Moreover, we have provided a characterization of the adap-
tation algorithm employed by Akamai High Definition Video
Server which also implements a stream-switching system.

The main results of the paper are the following: 1) QAC
is able to control the video level l(t) to match the available
bandwidth b(t) with a transient time that is less than 30s
always providing a continuous video reproduction; 2) the
proposed controller is able to share in a fair way the avail-
able bandwidth both in the case of a concurrent greedy con-
nection and a concurrent video streaming flow; 3) Akamai
underutilizes the available bandwidth due to the conserva-

Server g1 g2 U

QAC 1860 1950 0.95
AHDVS 1815 1612 0.85

Table 3: Goodput g1 and g2 (kbps) of the two con-
current flows and channel utilization U

tiveness of its algorithm based on heuristics; 4) moreover,
when abrupt reductions of the available bandwidth occur,
the video reproduction is affected by interruptions.
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