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Abstract— Video content distribution over the traditional best-
effort, store-and-forward Internet Protocol is of ever increasing
importance due to the great success of new web services such
as personal video broadcast or television over IP (IPTV). In
this paper we investigate the end-to-end quality of service (QoS)
that is provided by the Apple Darwin Streaming Server and
the Quick-Time client player in the presence of time-varying
available bandwidth and multiple concurrent streaming sessions.
The considered end-to-end QoS parameters are loss rates and
friendliness experienced in the presence of variable available
bandwidth and when multiple QuickTime streaming sessions
and/or TCP sessions compete in order to obtain a bandwidth
share.

We found that the Darwin Streaming Server implements a
TCP-like congestion control that is more aggressive than TCP;
in particular, when more QuickTime flows share the same link
with TCP flows, QuickTime gets more bandwidth than TCP.
Moreover, in this case QuickTime flows exhibit a higher loss
rate than TCP ones.

Index Terms— End-to-End QoS, Multimedia Congestion Con-
trol, Reliable UDP, Apple Darwin Streaming Server, QuickTime
Player

I. INTRODUCTION

Audio/Video content distribution is nowadays a potential
killer application for the Internet as it is proved by the great
success of YouTube [1] and by the introduction of new appli-
cations such as Joost and Babelgum, which aim at providing
television distribution over IP. The most part of Internet traffic
is still delivered using the TCP transport protocol, which has
been the key factor of Internet stability so far. This is the
reason for which many Web sites (such as YouTube ) that
host small length and low resolution videos use only pseudo-
streaming technologies that are based on the simple TCP
download. In this way the generated traffic is not harmful
for the stability of the Internet because the TCP transport
protocol implements an effective congestion control algorithm
[2]. However, it is not yet clear if the perceived quality is
satisfactory for the user. In fact the source of the great success
obtained by YouTube is very much likely to be due to the
richness of contents and its large user base rather than to the
quality of the video delivering. In fact, the TCP window-based
congestion control guarantees congestion avoidance by using
the additive increase/multiplicative decrease paradigm [2] and
reliable delivery of the content through packet retransmissions
but not content delivery within delay constraints.
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On the other hand, multimedia streaming services can
tolerate some low packet loss percentage but require more
tight quality of service (QoS) requirements in terms of end-
to-end delays and jitter. For this reason the UDP protocol is the
preferred transport protocol for multimedia streams, because,
as matter of fact, it is a simple packet multiplexer/demul-
tiplexer, where the packet sending rate can be managed at
the application level. However, many multimedia applications
which use UDP do not implement effective congestion control
mechanisms, thus possibly leading to a network congestion
collapse [3] due to the presence of many unresponsive flows
on the same bottleneck link. This circumstance can cause a
persistent loss rate, which is an important factor that affects
the perceived quality [4],[5].

Several efforts have been made to design multimedia con-
gestion control protocols that are TCP friendly, where friend-
liness here means that the multimedia flows will share the
network bandwidth with TCP flows fairly. The TCP Friendly
Rate Control (TFRC) protocol is currently being discussed
within the IETF as a possible congestion control algorithm for
the transport of multimedia flows [6]. An interesting solution
is the Reliable UDP proposed by Apple, which is a TCP-like
congestion control protocol that aims at providing a set of QoS
enhancements for RTP multimedia flows [7] (see Sec. III for
more details)

The Darwin Streaming Server (DSS) is the open source ver-
sion of the commercial Apple’s QuickTime Streaming Server
(QTSS) that allows the distribution of streamed multimedia
contents over the Internet. The protocols employed by DSS
are the standard RTP and RTCP [8]. DSS is based on the same
code base of QTSS, but its source code is freely distributed
under the Apple Public Source License. Both DSS and the
official commercial QuickTime Player (QTP) [9] implement
the Reliable RTP congestion control. DSS uses well-known
standards (such as RTP, RTCP, SDP and HTTP) for content
distribution. Thus, every multimedia player that supports RTP
can be used as client.

In this paper we have used the official DSS and QTP
for investigating the effectiveness of Reliable UDP conges-
tion control algorithm in the presence of changing available
bandwidth and/or packet losses. Moreover, we have employed
VideoLAN Player [10] which does not implement Reliable
UDP in order to perform a comparative test with QTP. The
goal of these investigations is to evaluate how the congestion
control algorithm implemented by Reliable UDP allows the
sending rates be managed in order to match the available
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bandwidth when multiple streaming sessions and/or TCP con-
nections share the same link, thus revealing intra-protocol and
inter-protocol fairness behavior.

The rest of the paper is organized as follows: Section II
presents the previous work on streaming server performance
evaluations; Section III provides a brief description of the
Reliable UDP protocol; Section IV describes the considered
experimental testbed and the scenarios; Section V reports the
experimental results we have obtained and finally Section VI
draws the conclusions.

II. RELATED WORK

Many recent investigations have focused on multimedia
streaming client/server applications. In [11] an investigation on
the Internet streaming quality and efficiency is performed by
collecting connection data from thousands of broadband home
users accessing both on-demand and live streaming media.
Authors have found that input rate adaptation, which is im-
plemented in media authoring, is poorly utilized, particularly
when a pre-buffering phase is used. The pre-buffering phase
(also called Fast Streaming) is widely used and much quality
degradation has found to be caused by re-buffering events.

Authors of [12] present an evaluation of RealVideo stream-
ing over UDP and over TCP. It has been found that Re-
alVideo over UDP does not respond to Internet congestion by
adapting the sending and/or the encoding rate. In particular,
under very constrained bandwidth conditions RealVideo UDP
streams does not share the bandwidth fairly with concurrent
TCP connections. Moreover, authors report that only the 35%
of RealServer implement some form of encoding scalability
(called Media Scaling), and less then the 50% of the clips
were using more then 4 encoding levels so that they can only
adapt to the available bandwidth coarsely.

In [13] an investigation of the Windows Streaming Media
(WSM) is performed in order to analize content multiple
encoding. They found that, if the network capacity is lower
than the minimum available encoding level, WSM produces
high packet loss rates exhibiting unfairness with concurrent
TCP flows.

In [14] a comparative analysis of RealPlayer, Windows
Media Player and Quicktime is performed in an emulated
environment. They used a UDP cross traffic generator concur-
rent with each multimedia stream flow in order to emulate a
network congestion condition. Authors have found that Quick-
time provided the lowest packet loss rate among the other
applications, thus indicating that DSS performs an effective
congestion control algorithm as compared to the other media
streaming solutions.

In this work we aim at performing an extensive investigation
of DSS by testing it on different scenarios in order to:
• evaluate how Reliable UDP reacts to congestion episodes
• estimate the friendliness between more concurrent Quick-

Time multimedia flows and between QuickTime flows
and TCP flows

III. APPLE’S RELIABLE UDP
Reliable UDP is a set of extensions to the RTP protocol

designed in order to provide retransmission and congestion

control mechanism to the unreliable UDP protocol. These
extensions allow multimedia streams to behave like TCP flows,
while providing soft real-time features. The Apple’s version
of Reliable UDP implements a congestion control based on
the Additive Increase/Multiplicative Decrease approach: the
sender maintains a congestion window (CWND) such as the
one used by the TCP congestion control; during the slow-
start phase, for each ACKed packet, CWND increases by
1 segment, whereas during the congestion avoidance phase
CWND increases by 1 segment every round trip time (RTT).
When a timeout expires (which in the DSS implementation is
always equal to 250 ms) or 3 duplicate ACKs (3DUPACKs)
are received the slow-start threshold is set to 3/4 of CWND
and CWND is halved. This behaviour makes Reliable UDP
more aggressive than TCP when a loss event is detected,
because when 3DUPACKs are received TCP halves the slow-
start threshold and enters the congestion avoidance phase,
whereas Reliable UDP enters the slow-start phase and then
the congestion avoidance phase.

The results obained by our evaluation confirm this behaviour
and we show that Reliable UDP tends to use more bandwidth
with respect to TCP concurrent flows.

IV. EXPERIMENTAL TESTBED

The testbed we have set up is made of a Linux ma-
chine, hosting the DSS, and a Windows machine where the
QuickTime and VideoLAN players have been installed. The
Linux machine has beed equipped with the tool ipqshaper)
that is able to set link capacity, delays, packets loss rates.
ipqshaper uses the Application Programming Interface
(API) provided by Netfilter [15] in order to redirect the
packets sent or generated by the applications to a user-space
drop-tail queue, where traffic shaping and measurement are
performed.

As it is shown in Figure 1, the packets generated by DSS
are redirected to ipqshaper’s queue, where traffic shaping
is performed. The egress packets from DSS are sent to the
QuickTime/VideoLAN players (P1,..., Pn) that are installed on
the Windows machine. iperf (T1,..., Tn) has been installed
in order to generate TCP concurrent flows. The queue size has
been set equal to 10 KB, and a 10 ms delay was applied to
all outgoing packets.

It should be noticed that the experimental testbed described
above is strictly equivalent to the one that could be obtained
using a Dummynet-like router [16], the only difference being
that in our case we are able to use only two hosts instead of
three.

The video flows have been generated by using the bench-
mark video sequence Foreman, which has been encoded in
MPEG4 format, resulting in an average bitrate of 242 kb/s.
We used the commercial version of QuickTime Player in order
to produce the correct hinted .mov files, required by the DSS
for the streaming.

The experimental scenarios we have tested are made of:
1) A single QuickTime flow with a super imposed constant

bandwidth limitation;
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2) Multiple QuickTime and TCP concurrent flows with a
constant bandwidth limitation;

3) Single and Multiple QuickTime and TCP flows with a
variable bandwidth limitation;

4) Single and Multiple Quicktime and TCP flows with a
super imposed loss rate.

The scenario (4) has been realised by using the Gilbert model
in order to emulate loss events that normally affect noisy
channels (e.g. IEEE 802.11a/b/g connections). This model uses
a two-states Markov chain: a good and a bad state. When the
process is into the good state, no loss events are generated.
When in the bad state, the arriving packets are dropped with
probability 1. Figure 2 shows the transition probabilities. It can
be proved that the expected values are: lgood = 1

1−pgood
and

lbad = 1
1−pbad

. The values lgood = 11.63 and lbad = 1.78 used
here are the ones reported in [17] for IEEE 802.11 connections.

Goodput, throughput and loss rate shown in test results are
defined as follows:

goodput =
∆sent − ∆loss

∆T

throughput =
∆sent

∆T

loss rate =
∆loss

∆T

where ∆sent is the number of bits sent in the period ∆T ,
∆loss is the number of bits lost in the same period. We have
considered ∆T = 0.5 s in our measurements.

V. RESULTS

In this section we present the test results we have obtained
in our experimental investigation of DSS.
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A. Darwin Streaming Server evaluation

1) VideoLAN vs QuickTime Player : In this scenario we
have evaluated the impact of using QTP - that supports
Reliable UDP protocol - w.r.t. using a generic player, such
as VLC, that does not support such protocol. We compared
QTP and VLC using the same available bandwidth. Using a
large available bandwidth of 800 kb/s, the average streaming
rate (without any loss events) was 264 kb/s with VLC. We
used a value of Bavg = 320 kb/s as a safe approximation of
the required bandwidth for one streaming flow.

We used 4 values for the available bandwidth: 0.50 · Bavg

, 0.75 · Bavg , Bavg and > Bavg, i.e. 800 kb/s. Figure 3
shows the average loss bitrate obtained with QTP and VLC,
respectively. It can be seen that VLC loss rate percentages
are roughly equal to the super-imposed bandwidth reductions,
whereas, on the other hand, the QTP loss rate is always around
5%. This result shows that the Reliable UDP congestion
control effectively succeeds at providing a low loss rate by
adapting the sending rate to the available bandwidth.

2) Two and four QuickTime concurrent flows: In this sce-
nario we tested DSS in presence of 2 or 4 concurrent streaming
sessions over the same link with super-imposed bandwidth
reductions in order to evaluate the fairness of Reliable UDP.

In the case of 2 concurrent QTP streaming sessions we
imposed a bandwidth equal to 0.75 · Bavg · 2 = 480 kb/s,
whereas in the case of 4 concurrent sessions we imposed a
bandwidth equal to 0.75·Bavg ·4 = 960 kb/s. Each connection
starts after a 10s delay from the other in order to avoid
overlaps between the pre-buffering phases.

As it is shown in Figure 4, during the first 10 s of each
connection, each flow tends to take up all the available
bandwidth in order to fill the playout buffer (over-buffering
phase). After this phase, DSS tries to allocate for each flow a
bandwidth equal to the average streaming rate Bavg , but the
first flows tends to occupy more resources, as it is shown in
Table I. Moreover, the second flow experiences a high loss
rate, i.e. the adopted congestion control is aggressive and tries
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Fig. 4. Two (a) and four (b) QuickTime concurrent flows

to reallocate bandwidth continuously.

In order to measure the fairness, we have evaluated the instan-
taneous Jain Fairness Index (JFI) [18] for each connection. As
it is shown in Figure 5, the instantaneous JFIs oscillate in the
range [0.5, 0.98] around their average values.

3) One and four QuickTime concurrent flows sharing a
square wave available bandwidth: In this scenario we have
used an available bandwidth that varies as a square wave in
the range [100, 1600] · N kb/s (where N is the number of
concurrent flows, i.e. N = 2 or N = 4) with a period which
is set equal to 40 s in order to investigate how DSS adapts his
sending rate.

As it is shown in Figure 6, DSS adapts its sending rate in
order to match the available bandwidth, using a pre-buffering
phase every time spare bandwidth is available. After each pre-
buffering phase, the throughput matches again Bavg .

In the case of four QuickTime concurrent flows, it results
that the flow that have been started first takes more bandwidth,
whereas the others experience a higher loss rate (Table I).
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Fig. 5. JFI index for two (a) and four (b) QuickTime concurrent flows

Experiment Flow TP (kb/s) LR (kb/s) JFI
2 QT, constant bw QT1 208.34 18.36 0.98

QT2 171.97 26.83
4 QT, constant bw QT1 217.81 30.56 0.96

QT2 183.37 37.15
QT3 178.14 48.21
QT4 154.34 51.54

1 QT, variable bw QT 257.67 10.91 -
4 QT, variable bw QT1 212.52 24.96 0.99

QT2 202.49 31.35
QT3 195.53 36.32
QT4 163.05 28.73

1 QT, lossy link QT 203.45 25.70 -
TABLE I

DSS TEST RESULTS WITH AVERAGE THROUGHPUTS (TP), LOSSRATES

(LR) AND JAIN FAIRNESS INDEXES (JFI).

4) One QuickTime flow over a lossy link: In this scenario
we have evaluated the behavior of DSS and QTP in the
presence of a lossy link, emulated using a Gilbert model.
Figure 7 shows the throughput and the loss rate imposed by
the Gilbert model. As it is shown in Table I, in this case the
throughput is roughly equal to Bavg, i.e. the congestion control
implemented by DSS exhibits a fast bandwidth reallocation,
likely because Reliable UDP uses a slow-start phase after each
loss event.
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B. Darwin Streaming Server vs TCP

1) One QuickTime flow with one concurrent TCP flows: In
order to evaluate the TCP-friendliness provided by QuickTime
streams we have set up a scenario in which the link capacity
is set equal to to 0.75 ·Bavg · 2 = 480 kb/s. The TCP flow is
started 10 s after the QuickTime flow. As it is shown in Figure
8, the TCP flow does not grab the same bandwidth share of
the QuickTime flow, thus resulting in a JFI which is equal to
0.86. The values of the average throughputs and loss rates are
reported in the Table II.

2) Many QuickTime flows with many concurrent TCP flows:
In this scenario we report results obtained about the TCP-
friendliness of QuickTime streams using more concurrent con-
nections. In particular we have run the following experiments:
1 QT and 3 TCP streams, 2 QT and 2 TCP streams and finally
3 QT and 1 TCP stream. We imposed an available bandwidth
equal to 0.75 · Bavg · 4 = 960 kb/s. In Figure 9, it is shown
that QT flows tend to be unfair when sharing the bottleneck
with TCP flows. Table II provides in the case of 2 QT and 2
TCP flows a JFI equals to 0.81, instead in the case of 3 QT
and 1 TCP flows the JFI is 0.87.

3) Many QuickTime flow with many concurrent TCP flows
over a square wave available bandwidth: In this scenario we
have evaluated the TCP-friendliness of QuickTime streams in
presence of time-varying available bandwidth, that varies as
a square wave in the range [100, 1600] · N kb/s (where N
is the number of total concurrent flows). Figure 10 shows
the experiment results. In the case of 1 QT and 1 TCP flow,
after each over-buffering phase, the QT flow takes a bandwidth
roughly equal to Bavg , so that the TCP flow (which is a greedy
source) can take a higher bandwidth. On the other hand, in the
case of 2 QT and 2 TCP flows, the QT flows take always more
bandwidth than TCP ones.
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Fig. 10. Many QuickTime flow with many concurrent TCP flows over a
square wave available bandwidth

Experiment Flow TP (kb/s) LR (kb/s) JFI
1 QT + 1 TCP, const bw QT 265.96 22.24 0.93

TCP 150.30 13.71
1 QT + 3 TCP, const bw QT 250.44 27.09 0.96

TCP1 198.18 24.45
TCP2 150.50 23.94
TCP3 179.20 23.61

2 QT + 2 TCP, const bw QT1 278.82 22.52 0.81
QT2 215.62 31.61
TCP1 87.70 18.49
TCP2 121.14 21.92

3 QT + 1 TCP, const bw QT1 249.55 27.32 0.87
QT2 216.97 36.67
QT3 144.67 33.40
TCP 93.76 18.46

1 QT + 1 TCP, variable bw QT 262.96 15.65 0.93
TCP 453.86 24.17

2 QT + 2 TCP, variable bw QT1 253.24 20.76 0.97
QT2 252.64 20.28
TCP1 195.46 24.23
TCP2 172.51 23.55
TABLE II

DSS VS TCP EXPERIMENTAL RESULTS REPORTING AVERAGE

THROUGHPUTS (TP), LOSS RATES (LR) AND JAIN FAIRNESS INDEXES

(JFI).

VI. CONCLUSIONS AND FURTHER WORK

We have carried out an investigation of the Darwin Stream-
ing Server (DSS) in order to evaluate the behavior of Reliable
UDP in the case of time varying network bandwidth and in the
presence of multiple concurrent QuickTime and TCP flows.

The main findings of this paper are the following: i) when
a client that does not implement Reliable UDP is used , no
congestion control is performed at all, and the loss rate is
proportional to the available bandwidth/encoding rate ratio;
ii) when a Reliable UDP-capable client is used, there is
an effective adaptation to the network bandwidth; iii) when
more concurrent QuickTime flows share the same link, the
available bandwidth is shared equally, albeit exhibiting large
oscillations; iv) QuickTime flows are very unfriendly with
respect to concurrent TCP flows and they eperience higher
loss rate.
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