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Abstract. Video content distribution over the traditional best-e�ort,
store-and-forward Internet Protocol is of ever increasing importance due
to the great success of new web services such as personal video broadcast
or television over IP (IPTV). In this paper we investigate the end-to-end
quality of service (QoS) that is provided by the Apple Darwin Stream-
ing Server and the Quick-Time client player in the presence of time-
varying available bandwidth and multiple concurrent streaming sessions.
The considered end-to-end QoS parameters are the loss rates and the
friendliness experienced when the available bandwidth changes and when
multiple QuickTime streaming sessions and/or TCP sessions compete in
order to obtain a bandwidth share.
We found that the Darwin Streaming Server implements a TCP-like
congestion control that is more aggressive than TCP; in particular, when
more QuickTime �ows share the same link with TCP �ows, QuickTime
gets more bandwidth than TCP. Moreover, when more QuickTime �ows
share the same link, they exhibit a high loss rate.
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1 Introduction

Audio/Video content distribution is nowadays a potential killer application for
the Internet as it is proved by the great success of YouTube1 and by the introduc-
tion of new applications such as Joost2 and Babelgum3, which aim at providing
television distribution over IP. The most part of Internet tra�c is still delivered
using the TCP transport protocol, which has been the key factor of Internet
stability so far. This is the reason for which many Web sites (such as YouTube)
that host small length and low resolution videos use only pseudo-streaming tech-
nologies that are based on the simple TCP download. In this way the generated
tra�c is not harmful for the stability of the Internet because the TCP transport

1 http://www.youtube.com/
2 http://www.joost.com/
3 http://www.babelgum.com/



protocol implements an e�ective congestion control algorithm [1]. However, it is
not clear if the perceived quality is satisfactory for the user. In fact the source
of the great success obtained by YouTube is very much likely to be due to the
richness of contents and its large user base rather than to the quality of the video
delivering.

The TCP window-based congestion control guarantees congestion avoidance
by using the additive increase/multiplicative decrease paradigm [1] and reliable
delivery of the content through packet retransmissions but not content delivery
within delay constraints. On the other hand, multimedia streaming services can
tolerate some low packet loss percentage but require more tight quality of service
(QoS) requirements in terms of end-to-end delays and jitter. For this reason
the UDP protocol is the preferred transport protocol for multimedia streams,
because, as matter of fact, it is a simple packet multiplexer/demultiplexer, where
the packet sending rate can be managed at the application level. However, many
multimedia applications which use UDP do not implement e�ective congestion
control mechanisms, thus possibly leading to a network congestion collapse [2]
due to the presence of unresponsive �ows on the same bottleneck link. This
circumstance can cause a high loss rate, which is an important factor that a�ects
the perceived quality [3, 4].

Several e�orts have been made to design multimedia congestion control pro-
tocols that are TCP friendly, where friendliness here means that the multimedia
�ows will share the network bandwidth with TCP �ows fairly. The TCP Friendly
Rate Control (TFRC) [5] protocol and the Datagram Congestion Control Pro-
tocol (DCCP) framework [6] are two IETF standards proposed as possible con-
gestion control algorithms for the transport of multimedia �ows. An interesting
solution is the Reliable UDP proposed by Apple, which is a TCP-like conges-
tion control protocol that aims at providing a set of QoS enhancements for RTP
multimedia �ows [7] (see Sec. 3 for more details).

The Darwin Streaming Server (DSS) is the open source version of the com-
mercial Apple's QuickTime Streaming Server (QTSS) that allows the distribu-
tion of streamed multimedia contents over the Internet. The protocols employed
by DSS are the standard RTP and RTCP4. DSS is based on the same code base
of QTSS, but its source code is freely distributed under the Apple Public Source
License. Both DSS and the o�cial commercial QuickTime Player (QTP)5 im-
plement the Reliable RTP congestion control. DSS uses well-known standards
(such as RTP, RTCP, SDP and HTTP) for content distribution. Thus, every
multimedia player that supports RTP can be used as client.

In this paper we have used the o�cial DSS and QTP for investigating the
e�ectiveness of Reliable UDP congestion control algorithm in the presence of
changing available bandwidth and/or packet losses. The goal of these investiga-
tions is to evaluate how the congestion control algorithm implemented by Reli-
able UDP allows the sending rates be managed in order to match the available

4 http://developer.apple.com/opensource/server/streaming
5 http://www.apple.com/it/quicktime/download/



bandwidth when multiple streaming sessions and/or TCP connections share the
same link, thus revealing intra-protocol and inter-protocol fairness behaviour.

The rest of the paper is organized as follows: Section 2 presents the previ-
ous work on streaming server performance evaluations; Section 4 describes the
considered experimental testbed and the scenarios; Section 5 reports the exper-
imental results and �nally Section 6 draws the conclusions.

2 Related Work

Many recent investigations have focused on multimedia streaming client/server
applications. In [8] an investigation on the Internet streaming quality and e�-
ciency is performed by collecting connection data from thousands of broadband
home users accessing both on-demand and live streaming media. Authors have
found that input rate adaptation, even though implemented in media authoring,
is poorly utilized, particularly when a pre-bu�ering phase is used. The pre-
bu�ering phase (also called Fast Streaming) is widely used and much quality
degradation is caused by re-bu�ering events.

Authors of [9] present an evaluation of RealVideo streaming over UDP and
over TCP. They have found that RealVideo over UDP does not respond to Inter-
net congestion by adapting the sending and/or the encoding rate. In particular,
under very constrained bandwidth conditions RealVideo UDP streams do not
share the bandwidth fairly with concurrent TCP connections. Moreover, authors
report that only the 35% of RealServer implement some form of encoding scala-
bility (called Media Scaling), and less then the 50% of the clips were using more
then 4 encoding levels so that they can only adapt to the available bandwidth
coarsely.

In [10] an investigation of the Windows Streaming Media (WSM) is per-
formed in order to analize content multiple encoding. They found that, if the
network capacity is lower than the minimum available encoding level, WSM
produces high packet loss rates and it is unfair with concurrent TCP �ows.

In [11] a comparative analysis of RealPlayer, Windows Media Player and
Quicktime is performed. They used a UDP cross tra�c generator concurrent
with each multimedia stream �ow in order to emulate a network congestion con-
dition. Authors have found that Quicktime provided the lowest packet loss rate
among the applications, thus indicating that DSS performs an e�ective conges-
tion control algorithm as compared to the other media streaming solutions.

In this work we aim at performing an extensive investigation of DSS by
testing it on di�erent scenarios in order to:

1. evaluate how Reliable UDP reacts to congestion episodes;

2. estimate the friendliness between more concurrent QuickTime multimedia
�ows and between QuickTime �ows and TCP �ows.



3 Apple's Reliable UDP

Reliable UDP is a set of extensions to the RTP protocol designed in order to
provide retransmission and congestion control mechanism to the unreliable UDP
protocol. These extensions allow multimedia streams to behave like TCP �ows,
while providing soft real-time features. Apple's version of Reliable UDP imple-
ments a congestion control based on the Additive Increase/Multiplicative De-
crease approach: the sender maintains a congestion window (CWND)such as the
one used by the TCP congestion control; during the slow-start phase, for each
ACKed packet, CWND increases by 1 segment, whereas during the congestion

avoidance phase CWND increases by 1 segment every round trip time (RTT).
When a timeout expires (which in the DSS implementation is always equal to
250 ms) or 3 duplicate ACKs (3DUPACKs) are received the slow-start threshold
is set to 3/4 of CWND and CWND is halved. This behaviour makes Reliable
UDP more aggressive than TCP when a loss event is detected, because when
3DUPACKs are received TCP halves the slow-start threshold and enters the
congestion avoidance phase, whereas Reliable UDP enters the slow-start phase
and then the congestion avoidance phase.

The tests we have carried on con�rm this behaviour and show that Reliable
UDP tends to use more bandwidth with respect to TCP concurrent �ows.

4 Experimental testbed

The testbed we have set up is made of a Linux machine, hosting the DSS,
and a Windows machine where the QuickTime players have been installed. The
Linux machine has beed equipped with a tool developed by us (ipqshaper) that
performs bandwidth and delays shaping, and introduces packets losses. This tool
uses the Application Programming Interface (API) provided by Netfilter [12]
in order to redirect the packets sent or generated by the applications to a user-
space drop-tail queue, where tra�c shaping and measurement are performed.

As it is shown in Figure 1, the packets generated by DSS are redirected to
ipqshaper's queue, where tra�c shaping is performed. The outbound packets
from DSS are sent to the QuickTime players (P1,..., Pn) that are installed on the
Windows machine. iperf (T1,..., Tn) were installed in order to generate TCP
concurrent �ows. The queue size was set equal to 10KB, and a 10ms delay was
applied to all outgoing packets.

It should be noticed that the experimental testbed is strictly equivalent to
the one that could be obtained using a Dummynet-like router [13], the only
di�erence being that in our case we are able to use only two hosts instead of
three.

The video �ows are generated by using the benchmark video sequence Fore-
man, which is encoded into an MPEG4 format, at a resulting average bitrate
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Fig. 1. Experimental testbed

Bavg of 242 kb/s. We used the commercial version of QuickTime Player in order
to produce the correct hinted .mov �les, required by the DSS for the streaming.

The experimental scenarios we have tested are made of:

1. Multiple QuickTime concurrent �ows with a super imposed constant band-
width limitation;

2. Multiple QuickTime concurrent �ows with a variable bandwidth limitation;
3. Single and Multiple Quicktime �ows with a super imposed loss rate;
4. Multiple QuickTime and TCP concurrent �ows with a constant bandwidth

limitation;
5. Multiple QuickTime and TCP concurrent �ows with a variable bandwidth

limitation.

The scenario (3) has been realised using the Gilbert model in order to emulate
loss events that a�ect noisy channels (e.g. IEEE 802.11a/b/g connections [14]).
This model uses a two-states Markov chain: a good and a bad state. When the
process is into the good state, no loss events are generated. When in the bad state,
the arriving packets are dropped with probability 1. If the transition probabilities
are pgood and pbad, it can be proved that the expected values are: lgood = 1

1−pgood

and lbad = 1
1−pbad

. The values lgood = 11.63 and lbad = 1.78 used here are the

ones reported in [14] for IEEE 802.11 connections.
Throughput r(t), loss rate l(t) and goodput g(t) shown in test results are

de�ned as follows:

r(t) =
S(t) − S(t−∆T )

∆T
, l(t) =

L(t) − L(t−∆T )
∆T

, g(t) = r(t) − l(t)

where S(t) and L(t) are the number of sent bits and lost bits at time t
respectively. We have considered ∆T = 0.5 s in our measurements.

We evaluate the link utilization (LU) as follows:

LU =
∑N

i=1Ri

C
· 100



where Ri is the average throughput of the i-th �ow, N is the number of
concurrent connections accessing the bottleneck and C is the link capacity.

In order to evaluate the fairness, we employ the Jain Fairness Index (JFI)
[15]. Moreover, in order to evaluate the temporal evolution of the fairness index,
we de�ne the instantaneous JFI as follows:

JFI(t) =

(∑N
i=1 gi(t)

)2

N ·
∑N

i=1 g
2
i (t)

Where gi(t) is the goodput of the i-th �ow and N is the number of concurrent
connections accessing the bottleneck.

5 Results

In this section we present the more signi�cative experimental results we have
obtained.

5.1 Darwin Streaming Server evaluation

Two and four QuickTime concurrent �ows In this scenario we tested DSS
in presence of 2 or 4 concurrent streaming sessions over the same link with super-
imposed bandwidth reductions in order to evaluate the fairness of Reliable UDP.

In the case of 2 concurrent QTP streaming sessions we imposed a bandwidth
equal to 0.75 · Bavg · 2 = 480 kb/s, whereas in the case of 4 concurrent sessions
we imposed a bandwidth equal to 0.75 · Bavg · 4 = 960 kb/s. Each connection
starts after a 10s delay from the other in order to avoid overlaps between the
pre-bu�ering phases.

As it is shown in Figure 2, during the �rst 10 s of each connection, each
�ow tends to take up all the available bandwidth in order to �ll the playout
bu�er (over-bu�ering phase). After this phase, DSS tries to allocate for each
�ow a bandwidth equal to the average streaming rate Bavg, but the �rst started
�ows tends to occupy more resources, as shown on Table 1. Moreover, the last
started �ows experience a higher loss rate, i.e. the adopted congestion control is
aggressive and tries to reallocate bandwidth continuously. The link utilization
in the case of two QT �ows results equal to 79% whereas in the case of four QT
�ows results equal to 76%, that is, QT �ows are unable to fully utilize the link
capacity.

As it is shown in Figure 3, the JFIs oscillate in the range [0.5, 0.98] around
their average values, meaning that the DSS congestion control becomes unfair
with respect to other QT �ows when the number of concurrent connections
accessing the same bottleneck raises.
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Fig. 2. Two and four QuickTime concurrent �ows.
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Fig. 3. JFI index for two and four QuickTime concurrent �ows.



One and four QuickTime concurrent �ows sharing a square wave avail-

able bandwidth In this scenario we used an available bandwidth that varies
as a square wave with maximum value AM = 1600 ·N kb/s and minimum value
Am = 100 · N kb/s (where N = 2, 4 is the number of concurrent �ows) with
period equal to 40 s in order to investigate how DSS adapts his sending rate.

As it is shown in Figure 4(a), DSS adapts its sending rate in order to match
the available bandwidth, using a pre-bu�ering phase every time a larger band-
width is available. After each pre-bu�ering phase (that lasts roughly 10 s), the
throughput is back to Bavg.

In the case of four QuickTime concurrent �ows, we started all �ows at the
same time. As it is shown in Figure 4(b), when the available bandwidth increases
from 100 to 1600 kb/s, each client starts an over-bu�ering phase. Therefore, in
this case all clients equally compete for a bandwidth share. In fact Table 1 shows
that the four clients loss rate levels are roughly the same and the JFI is close to
1 (fair share). We can infer that in this case DSS congestion control is more fair
than the case described in the previous section, likely because the over-bu�ering
phases start at the same time for each client.
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Fig. 4. One and four QuickTime concurrent �ows over a square wave available band-
width.

One QuickTime �ow over a lossy link In this scenario we have evaluated
the behaviour of DSS and QTP in the presence of a lossy link, emulated using
a Gilbert model. Figure 5 shows the throughput and the loss rate imposed by
the Gilbert model. As it is shown in Table 1, in this case the throughput is
roughly equal to Bavg, i.e. the congestion control implemented by DSS exhibits



a fast bandwidth reallocation, likely because Reliable UDP uses a slow-start
phase after each loss event.

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1 flow QT with lossy link

T
hr

ou
gh

pu
t [

kb
/s

]

time [s]

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

Lo
ss

R
at

e 
[k

b/
s]

time [s]

Fig. 5. One QuickTime �ow over a lossy link.

5.2 Darwin Streaming Server vs TCP

Many QuickTime �ows with many concurrent TCP �ows In this sce-
nario we evaluated the TCP-friendliness of QuickTime streams using more con-
current connections: 1 QT and 3 TCP streams, 2 QT and 2 TCP streams and
�nally 3 QT and 1 TCP stream. We imposed an available bandwidth equal to
0.75 ·Bavg ·4 = 960 kb/s. As it is shown from �gure 6, QT �ows tend to be unfair
with respect to TCP �ows. By looking at Table 2, in the case of 2 QT and 2
TCP �ows, the calculated JFI is low (0.81), instead in the case of 3 QT and 1
TCP �ows the JFI is 0.87.

The evaluated link utilization in the case of 1 QT and 3 TCP is equal to
81%, whereas in the other cases results equal to 73%, i.e. TCP �ows are able to
utilize more bandwidth than the QT �ows.



Experiment Flow TP (kb/s) LR (kb/s) LR% JFI

2 QT, constant bw QT1 208.34 18.36 9 0.98
QT2 171.97 26.83 16

4 QT, constant bw QT1 217.81 30.56 14 0.96
QT2 183.37 37.15 20
QT3 178.14 48.21 27
QT4 154.34 51.54 33

1 QT, variable bw QT 257.67 10.91 4 -

4 QT, variable bw QT1 212.52 24.96 12 0.99
QT2 202.49 31.35 15
QT3 195.53 36.32 19
QT4 163.05 28.73 18

1 QT, lossy link QT 203.45 25.70 13 -

Table 1. DSS test results showing average throughputs (TP), lossrates (LR) and Jain
Fairness Indexes (JFI).
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Many QuickTime �ow with many concurrent TCP �ows over a square

wave available bandwidth In this scenario we have evaluated the TCP-
friendliness of QuickTime streams in presence of time-varying available band-
width, that varies as a square wave with maximum value AM = 1600 · N kb/s
and minimum value Am = 100 ·N kb/s (where N is the number of total concur-
rent �ows). Figure 7 shows the test results. In the case of 1 QT and 1 TCP �ow,
after each over-bu�ering phase, the QT �ow takes a bandwidth roughly equal to
Bavg, so that the TCP �ow (which is a greedy source) can take a larger fraction
of bandwidth. On the other hand, in the case of 2 QT and 2 TCP �ows, the QT
�ows always take more bandwidth than TCP ones.
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Fig. 7. QuickTime �ows with concurrent TCP �ows over a square wave available band-
width.

6 Conclusions

We have carried out an investigation of the Darwin Streaming Server (DSS) in
order to evaluate the behaviour of Reliable UDP in the case of time varying
network bandwidth and in the presence of multiple concurrent QuickTime and
TCP �ows.

Main results are: i) when a Reliable UDP-capable client is used, there is
an e�ective adaptation to the network bandwidth; ii) when more concurrent
QuickTime �ows share the same link, the available bandwidth is not shared fairly,
depending on the over-bu�ering phase adoption by each �ow; iii) QuickTime
�ows are unfriendly with respect to concurrent TCP �ows, since they experience
a goodput much higher than TCP ones.



Experiment Flow TP (kb/s) LR (kb/s) LR% JFI

1 QT + 3 TCP, const bw QT 250.44 27.09 11 0.96
TCP1 198.18 24.45 12
TCP2 150.50 23.94 16
TCP3 179.20 23.61 13

2 QT + 2 TCP, const bw QT1 278.82 22.52 8 0.81
QT2 215.62 31.61 15
TCP1 87.70 18.49 21
TCP2 121.14 21.92 18

3 QT + 1 TCP, const bw QT1 249.55 27.32 11 0.87
QT2 216.97 36.67 17
QT3 144.67 33.40 23
TCP 93.76 18.46 20

1 QT + 1 TCP, variable bw QT 262.96 15.65 6 0.93
TCP 453.86 24.17 5

2 QT + 2 TCP, variable bw QT1 253.24 20.76 8 0.97
QT2 252.64 20.28 8
TCP1 195.46 24.23 12
TCP2 172.51 23.55 14

Table 2. DSS vs TCP test results showing average throughputs (TP), loss rates (LR)
and Jain Fairness Indexes (JFI).
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