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Abstract 

In this paper hyperchaos synchronization is restated as a 
nonlinear observer design issue. This approach leads to 
a systematic tool, which guarantees synchronization of a 
wide class of hyperchaotic systems via a scafar signal. 
By exploiting this result, we propose to combine 
conventional cryptographic methods and 
Jynchronization of chaotic circuits to design 
hyperchaos-based cryptosystems. This makes a new 
contribution to the development of communication 
systems with higher security. 

1. Introduction 

In the last few years several researchers have focused 
their attention on the problems related to the 
synchronization of chaotic systems [I]-[7]. Since chaos 
is characterized by a sensitive dependence on initial 
conditions, one could conclude that synchronization is 
not obtainable. This because even infinitesimal change 
will eventually result in divergence of nearby starting 
orbits [l]. In order to overcome this drawback, different 
methods have been proposed [l]-[3]. In particular, the 
scheme suggested by Carroll and Pecora [2] consists in 
taking a chaotic system, duplicating some subsystem 
and driving the duplicate and the original subsystem 
with signals from the unduplicated part. When all the 
Lyapunov exponents of the driven subsystem (response 
system) are less than zero, the response system 
synchronizes with the drive system if both systems start 
in the same basin of attraction [2]. However, most of the 
developed methods concern with the synchronization of 
low dimensional systems characterized by only one 
positive Lyapunov exponent. Since this feature limits 
the complexity of the chaotic dynamics, the adoption of 
higher dimensional chaotic systems has been proposed 
for secure communications [4]. In fact, the presence of 
more than one positive Lyapunov e‘xponent clearly 
improves security by generating more complex 
dynamics [S]. 
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However, the utilization of more complex dynamics 
raises the question of whether synchronization can still 
be achieved by transmitting a scalar signal [4]. 
Referring to this topic, a method has been developed in 
[6], which enables hyperchaos synchronization to be 
achieved in a systematic way by using a scalar signal. 
The technique proposed in [6] is based on nonlinear 
observer design and has several advantages over the 
existing methods. In particular, it can be successfully 
applied to a wide class of hyperchaotic systems and it 
does not require the computation of any Lyapunov 
exponent in order to verify synchronization. 
In this paper, the synchronization approach illustrated 
in [6] is applied to design secure communications 
systems. In particular, by exploiting the recent result 
proposed in [9], the idea is to combine conventional 
cryptographic methods and synchronization of chaotic 
systems to design hyperchaos-based cryptosystems. This 
objective is achieved by designing the decrypter as a 
nonlinear observer for the state of the encrypter. The 
message signal is recovered at the decrypter by 
exploiting the synchronization properties of the 
proposed method. The advantage of the approach 
developed herein is that the effectiveness of the 
communication scheme is enhanced, since both the 
adoption of hyperchaotic systems and the increased 
complexity of the transmitted signal enable to overcome 
the low-security objections against low-dimensional 
chaos-based schemes [S], [9]. 

2, Observer design for hyperchaos synchronization 

Given two hyperchaotic systems, the dynamics of which 
are described by the following two sets of differential 
equations: 

i=h+bf(x)+c (1) 
j=Ay+bf(y)+c (2) 





z(t) = f(x)+ 5 kixi + e,,(t) 
i=i 

The decrypter consists of a chaotic system and a 
decryption function, which is able to recover the message 

signal by means of the reconstructed chaotic key K(t). 

#en the decrypter and the encrypter are synchronized, 

that is x(t) + Y(t), it results 

(i(t) = W(t))) -+ (W(0) = W)) 

( 
z(t) - f(Y) - $kiYi = &n(t) + e,,(t) . 

i=l I 

As a consequence, the decryption function d enables to 
recover the message signal p(t) since 

(d(G,@),&t)) = 17(t)) + @(e,,(t)&(r)) = ~(0). 

In order to implement the proposed secure 
communication system, the Matsumoto-Chua-Kobayashi 
circuit [lo] is used (see Fig. 2). This circuit has been the 
first experimental observation of hyperchaos from a real 
physical system. By considering the parameters and the 
equations reported in [ 131, the dynamics of the circuit 
can be written as 

where 

1 

- 0.2 +3(x1 -x3 + 1) x1 -x3 < -1, 

&,x3)= -0.2(X1 -x3) -l<x1-x3 21, 

-0.2+3(x, -x3 -1) X] -x3 >I. 

In order to encrypt the message signal p(t) = sin t , an n- 

shift cipher [9] is chosen 

%?,(0 = fi(...fi(fi(p(t),K(t)XK(t)X...,K(t)) (9) 

where the following nonlinear function 

-2hI (x+-K) 2 -h, 

-h<(x+K)<h, (10) 

hr(x+K)<2h. 

is recursively used for the encryption, with h=3, ~30 
and K(t) = x4(t) . 

By exploiting the proposed synchronization approach, 
encrypter and decrypter must be designed as follows 

0 -1 0 0 Yl 

1 0.7 0 0 Y2 
+ 0 

0 0 -10 y3 
p, g(YlyY3) 

0 0 1.5 0 

HII -1 

Y4 0 

-1 

+ ,OO z - g(Yl,Y3)- ?lkiYi 11 i i=l 
0 

where the hyperchaotic transmitted signal 

(11) 

(12) 

z(t) = &,x3)+ ikixi + e,,(t) 
i=l 

(13) 

hides the encrypted signal e&t), which in turn hides the 
message signal p(t). From (12) and (11) it is easy to 
derive the following linear time-invariant error system 

-0-1 0 0 

1 0.7 0 0 

0 0 0 -10 

0 0 1.5 0 1 

(14) 

Since the controllability matrix of (14) is full rank, the 
decrypter (12) becomes a global observer of the 

encrypter (11) by a suitable choice of the vector k. For 

instance, the choice kl = -0.3764, k2 = 0.2384, 

kg = 0.4324 k4 = -0.43 14 places the eigenvalues of 

(14) in -1. As a consequence, synchronization is 



achieved and the method succeeds in generating the 
desired cryptosystem. 
By considering the encrypted signal recovered by the 
decrypter 

<n(f) = z - &%Y& &Yi (15) 
i=l 

and by using the recovered key z(t) = y4(t), the 

following message signal is retrieved 

where the decryption rule is the same as the encryption 
one [9]. Since the encrypter and the decrypter are 
synchronized, it results y4(t) + x4(t), that is, 

E(t) -+ K(t) . Moreover, from (13) and (15) it follows 

that Zen (0 + e,, (0, which assures the desired 

condition 

The validity of the proposed secure communications 
scheme is confirmed by simulation results. In particular, 
the hyperchaotic transmitted signal (13) is reported in 
Fig. 3, whereas the recovered message signal (16) is 
shown in Fig. 4. 

4. Conclusions 

In this paper conventional cryptographic methods and 
synchronization of chaotic circuits have been combined 
in order to design hyperchaos-based secure 
communications systems. The proposed design 
technique is systematic and exploits observer design 
theory. It allows us to design cryptosystems with more 
complex dynamics, making a further contribution to the 
development of communication systems with higher 
security. 
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Fig. 1 A block diagram illustrating the proposed secure communications scheme. 

Fig. 2 The Matsumoto-Chua-Kobayashi circuit. 
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Fig. 3 Time waveform of the transmitted signal (13). Fig. 4 Time waveform of the message signal (16) 
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