
A Hybrid Model of the Akamai
Adaptive Streaming Control System

L. De Cicco ∗ G. Cofano ∗ S. Mascolo ∗

∗ Politecnico di Bari, Dipartimento di Ingegneria Elettrica e
dell’Informazione, Via Orabona 4, Bari, Italy (e-mails:

{l.decicco,g.cofano,mascolo}@poliba.it)

AbstractVideo streaming is becoming the application generating the largest fraction of the
Internet traffic. Adaptive video streaming adds to classic video streaming the feature of
dynamically adapting the video bitrate to track the time-varying network available bandwidth,
avoid playback interruptions and ensure the delivery of the best video quality. In this paper
we focus on the adaptive video streaming control system employed by Akamai, a major CDN
operator whose video delivery system is used by several video streaming platforms, including
Livestream. Differently from the typical client-side control, Akamai employs an interesting and
unique hybrid client/server control architecture. Our purpose is to derive and validate a closed
loop mathematical model of the control system, which turns out to be a hybrid automaton.
The model is then analyzed to derive key properties which can be used to properly tune the
controller parameters.

1. INTRODUCTION AND RELATED WORK

Multimedia applications generate an ever increasing frac-
tion of the Internet traffic (Cisco, 2012). Video streaming
is the most important application driving this trend. Ex-
amples such as YouTube, delivering user-generated video
content, or NetFlix, which streams movies and TV series,
give evidence of the wide diffusion such applications have
reached.

Adaptive video streaming represents a key innovation wrt
classic progressive download streaming. With adaptive
streaming the video bitrate can be throttled on-the-fly to
match the time-varying available bandwidth. Moreover,
start-up latency can be minimized and video playback
interruptions can be avoided.

Today, the leading approach for implementing adaptivity,
which is used – among the others – by YouTube, Netflix,
and Akamai, is the stream-switching : the server encodes
the video content at different bitrates, i.e. the video levels,
and a control algorithm dynamically selects the video level
to be sent based on measurements such as the available
bandwidth and the player buffer length. From the control
architecture point of view, the mainstream approach is the
one employed by the Dynamic Adaptive Streaming over
HTTP (DASH) standard, which places the controller at
the client and streams the video through standard HTTP
servers (Sodagar, 2011).

Recently, several studies have analyzed the issues of client-
side adaptive streamers. Typically, such streaming systems
are characterized by a on-off traffic pattern Akhshabi et al.
(2012): the video segments are downloaded during an ON
phase and then, during the OFF phase, the player is kept

1 This work has been partially supported by the Italian Min-
istry of Education, Universities and Research (MIUR) through the
PLATINO project (PON01 01007).

idle until the next download is started. In Akhshabi et al.
(2012) it is shown that such on-off traffic pattern is the
key factor causing unfair bandwidth utilization, server
bandwidth underutilization and flickering of the player re-
quested video level. To tackle these issues, several adaptive
streaming algorithms have been proposed so far. In Jiang
et al. (2012) FESTIVE has been proposed to address the
fairness issues arising in a multi-client scenario. In Li et al.
(2014) the algorithm PANDA is proposed: a controller
dynamically computes the segment inter-request time to
address fairness issues and video bitrate oscillations. By
using a control theoretical approach, De Cicco et al. (2013)
have designed a stream-switching controller which is able
to avoid OFF phases without the cooperation of the server.

In this paper we focus on the proprietary adaptive stream-
ing control system employed by Akamai, which is used by
several video streaming services to implement a massive
video distribution platform. Since its source code cannot
be inspected, in De Cicco and Mascolo (in press) an ex-
perimental testbed has been used to investigate its control
system. It has been shown that the Akamai control system
employs an interesting and unique hybrid architecture that
is distributed on the client and the server.

Our purpose is to go further and derive a mathematical
model of the closed loop system, which turns out to be
a hybrid automaton and allows us to provide rules for
the tuning of the controller parameters. The closed loop
system is composed of 1) the Akamai stream-switching
controller, 2) the actuator, which throttles the sending
rate, and 3) the video playout buffer, which represents
the plant. The controller and the plant are located at the
client, whereas the actuator is placed at the server.



2. THE STREAM-SWITCHING APPROACH

A video streaming system allows a client to reproduce
the video that is sent by a remote server through an
Internet connection. The client employs a playout buffer to
absorb the instantaneous mismatches between the encod-
ing bitrate and the network available bandwidth, which
in best effort Internet is unpredictable and time-varying.
However, if the bandwidth gets below the video bitrate
for a sufficiently long time, the buffer will eventually get
empty and a buffering phase will be triggered: the player
gets paused for a time interval, the buffering time, allowing
the buffer to reach a safety threshold before the playing
can be resumed again.

In classic progressive download streaming the video con-
tent is available only at a bitrate equal to l. Such an
approach cannot guarantee both maximum link utilization
and the avoidance of buffering events. On the other hand,
with adaptive video streaming the video bitrate can be dy-
namically throttled to match the available bandwidth b(t).
Hence, an adaptive video streaming system can leverage
the video encoding bitrate to implement a controller whose
aim is to ensure that the player buffer length q(t) does not
get empty while providing the highest video quality.

Among the proposed adaptive video streaming approaches,
the stream-switching is getting a wide adoption due to
its implementation and deployment simplicity (De Cicco
et al., 2011). The video is encoded at bitrates l0 < l1 <
· · · < lN−1 resulting into N versions, i.e. the video levels.
Each video level is then divided logically, or physically,
into n segments of fixed duration. We define the discrete
set of video levels L = {l0, l1, ..., lN−1}, a set of video level
indices I = {0, 1, ..., N − 1}, and the bijective mapping
l : I → L that associates the video level index to the
video level bitrate. The switching controller changes the
video level: at any given time t, based on the controller
input, it computes the video level index i(t) to select. As a
consequence, the client will receive a video with a variable
encoding bitrate l(t) = l(i(t)). It is important to notice
that video level switches can only occur at the beginning
of a new segment transmission. Finally, in the following
we will use l(i(t)) or li(t) equivalently with some abuse of
notation.

3. THE PLAYOUT BUFFER DYNAMICS

As any storage element, the playout buffer length q(t), i.e.
the total duration of video stored in the playout buffer,
can be modelled as an integrator:

q̇(t) = f(t)− d(t),

where f(t) is the filling rate and d(t) is the draining rate.

Let us focus on the filling rate, which is equal by definition
to dtv/dt, where dtv is the amount of video duration
received by the client in a time dt. The video encoding
bitrate is defined as l(t) = dD/dtv, where dD is the amount
of bytes required to store a portion of video of duration dtv.
It is important to notice that l(t) is always strictly greater
than zero by definition. The received rate r(t) is defined
as r(t) = dD/dt, i.e. the amount dD of bytes received in
a time interval dt. Thus, since f(t) = dtv/dt = (dtv/dD) ·
(dD/dt), it turns out that:

f(t) =
r(t)

l(t)
. (1)

We now derive the model of the draining rate d(t). The
playout buffer is drained by the player: when the video
is playing, dtv seconds of video are played in dt = dtv
seconds, i.e. d(t) = 1; on the other hand, when the player
is paused the draining rate is zero. Thus, d(t) can be
modelled as follows:

d(t) =

{
1 playing

0 paused
(2)

Finally, by combining (1) and (2) we obtain the playout
buffer length model:

q̇(t) =
r(t)

l(t)
− d(t). (3)

4. THE AKAMAI HYBRID MODEL

4.1 The Akamai adaptive stream-switching control system

The video is sent to the client by a HTTP server over a
TCP connection. The typical behavior of a Akamai video
streaming session can be summarized as follows. At the
beginning, a Buffering phase is entered to quickly fill the
queue until a threshold is reached. Then, a periodical
switching between two phases is established: during the
Normal phase the control system throttles the server
sending rate to steer the playout buffer to a target length;
during the Greedy phase, instead, the server sends at a
higher sending rate to probe and estimate the available
bandwidth. During the periodical switching the following
events can occur: 1) the control system decides to either
switch up or switch down the video level; 2) the playout
buffer gets empty. The Buffering phase is entered after a
switch-down or when the playout buffer gets empty.

The control system is based on two controllers both
executed at the client: 1) the stream-switching controller,
which dynamically selects the appropriate video level and
2) the playout buffer level controller, whose goal is to avoid
that the playout buffer gets empty.

The stream-switching control system

The stream-switching controller is event-based, i.e. its
decisions are triggered when particular events occur. As-
suming the current video level is li, a video level switch-up

is triggered when the estimated bandwidth b̂(t) is at least
greater than the video level li+1 by a safety factor Sf > 0,

i.e. when b̂(t) > (1 + Sf )li+1. Then, the algorithm selects

the maximum video level lj > li such that b̂(t) > (1+Sf )lj .
On the other hand, a video level switch-down is triggered
when the playout buffer length q(t) is lower than the
switch-down threshold qd. In this case the algorithm selects

the maximum video level lj < li such that b̂(t) > (1+Sf )lj .
Hence, the optimal video level lopt(t) is given by:

lopt(t) = arg max
l∈L

l

s. t. b̂(t) > (1 + Sf )l (4)



+
−

−

PlantActuatorController

f (·) ×
li

qT × +

d1
li qT r

b

r̂ b 1
s

Figure 1. The playout buffer control system

The playout buffer control system

The playout buffer control system is composed of three
elements, as shown in Figure 1:

(1) the controller, which sets a throttling signal T (t) to
drive the server sending rate r̂(t);

(2) the actuator, placed at the server, which computes
r̂(t) based on the throttling signal T (t) and the
current video level li(t);

(3) the plant, which is made of a saturation block, mod-
elling the bottleneck link of bandwidth b(t), and the
playout buffer q(t).

The controller computes the throttling signal T (t) accord-
ing to the current phase of the system, i.e. Buffering,
Normal, or Greedy.

During the Buffering phase, T (t) is set equal to TB >
1. This phase is left when q(t) gets above a threshold
qh > qd. It is important to notice that switch-up events
are inhibited during this phase.

As mentioned above, when the Buffering state is left, a
periodical switching between Normal and Greedy states is
established. To enforce this periodical behaviour a timer is
used. Its duration depends on the last video level switching
command: after a switch-up (switch-down) the Normal
phase lasts τNU (τND), whereas the Greedy phase lasts
τGU (τGD).

During the Normal phase T (t) is varied to implement a
closed loop control system that aims at steering q(t) to a
set-point qT . To the purpose, T (t) is set as a function of
the error e(t) = qT − q(t) according to:

T (t) = max

(
1 +

qT − q(t)
qT

, Tm

)
. (5)

The minimum throttling Tm avoids the sending rate to be
zero. By considering (5) it turns out that T (t) = Tm when
q(t) > (2− Tm)qT , i.e. in case the playout buffer is large.

The Greedy phase is employed to make the video saturate
the bottleneck link and measure the available bandwidth.
During this phase T (t) is set to TM > 2, which is the
maximum value of T (t) during the Normal phase.

The throttling signal T (t) is then used by the actuator to
produce the sending rate according to:

r̂(t) = T (t)li(t). (6)

Actually, since Akamai employs the TCP to send the
video content, the sending rate is controlled by the TCP
congestion control algorithm, which generates a best-effort
traffic quickly matching the available bandwidth b(t).
However, the Akamai video server can indirectly control

the sending rate, on short average, by filling the TCP
buffer at the desired sending rate. In practice, since the
dynamics of the TCP congestion control is faster than
that of the control system, the received rate r(t) can be
modelled by the following equation:

r(t) =

{
r̂(t) r̂(t) < b(t)

b(t) otherwise
(7)

which corresponds to the saturation block shown in Fig-
ure 1.

Figure 1 shows that controlling the sending rate through
the throttling signal T (t) multiplied by li(t) is equivalent
to a feedback linearization of the plant. In fact, in the
absence of saturation, it turns out that q̇(t) = T (t)− d(t).
At steady state, T (t) is equal to d(t) = 1. By considering
(5) it turns out that q(t) = qT . Thus, during the Normal
phase the control signal T (t) drives the queue length to
the set-point.

The client estimates the available bandwidth b̂(t) by mea-
suring and filtering the received rate r(t). By neglecting
the filter, since its dynamics is dominated by that of the

system, we can assume b̂(t) = r(t). Hence, in the hybrid

model we will employ r(t) in place of b̂(t) when formulating
the video level switching conditions.

Assumptions

In this paper we assume a piecewise constant available
bandwidth input function, which allows us to analyze any
practical traffic scenario with a bottleneck link (Mascolo,
1999). Thus, we will analyze the system behavior in re-
sponse to a step input of amplitude B. With respect to
(De Cicco and Mascolo, in press) in the model presented
above we have made the following simplifying assump-
tions:

• A1: the communication forward and backward delays
from the client to the server τf and τb and the
actuation time-delay τa have been neglected;

• A2: the time-varying safety factor S(t), which varies
in [0.2, 0.4] depending on the Round Trip Time, has
been assumed to be constant and equal to Sf ;

• A3: the queue thresholds qd(t) and qh(t) and the set-
point qT (t), which depend on the current video level
and on the safety factor S(t), have been assumed to
be constant.

4.2 The proposed hybrid automaton

In this section we propose a closed loop model of the
system described in Section 4.1. The state-dependent and
event-triggered dynamics and the discontinuous elements,
such as the saturation block, can be properly modelled
by means of a hybrid system. In particular, we model the
system as a hybrid automaton (Lygeros et al., 2003).

Figure 2 shows the proposed hybrid automaton, which is
denoted as H. The state of the system is given by the
continuous component:

x = [i(t), r(t), q(t), τ(t), τ1(t), τ2(t)]ᵀ



(6)

Switch−down

Switch−up
(5)

Greedy(3)

Normal

Full Channel(1) Closed Loop(0)

Refilling(7) Empty Queue(2)

Large Queue(4)

Buffering

ẋ = f3(x)

ẋ = f1(x) ẋ = f0(x) ẋ = f4(x)

ẋ = f7(x) ẋ = f2(x)

Figure 2. The proposed hybrid automaton H

and the logical component s ∈ S = {0, 1, . . . , 7}, where
S is the set of logical modes of the automaton. The six
state variables of x are: 1) the current video level index i(t)
decided by the stream-switching controller, 2) the received
rate r(t) in kbps, 3) the playout buffer length q(t) in
seconds, 4) a timer τ(t), 5) and 6) timer 1 and timer 2
durations τ1(t) and τ2(t). The initial conditions for each
state are such that x ∈ I × [0, B]× R+ × R+ × R+ × R+.

It is worth noting that only q(t) and τ(t) are characterized
by a dynamic evolution, whereas the remaining variables
can change only during jumps. The timer dynamics is
given by:

τ̇ =

{
1 on,

0 off.

Thus, to characterize its behavior it is sufficient to specify
in which states it is on.

In the following we describe the 8 logical modes 2 of H:

• Closed Loop (0), Full Channel (1), and Large Queue (4)
model the behaviour of the system during the Normal
phase described in Section 4.1. It has been necessary
to employ three states to deal with the two disconti-
nuities that can occur in this phase (see (5) and (7)).
The Closed Loop state holds by default during Normal
phase. The Large Queue state holds only if q(t) > (2−
Tm)qT , i.e. this state models the discontinuity in (5).
Full Channel holds when the bottleneck is saturated
(see (7)) and prevents the received rate from going
above the bottleneck bandwidth B.
• Empty Queue (2) and Refilling (7) model the Buffering

phase described in Section 4.1. During the Empty
Queue state, which is entered when q(t) = 0, the video
reproduction is interrupted, i.e. d(t) = 0, to quickly
fill the queue; during Refilling, which is entered from
either Switch-down or Empty Queue states, the video
reproduction is on, i.e. d(t) = 1.
• Greedy (3) models the Greedy phase described in

Section 4.1, where the system probes the available
bandwidth;
• Switch-up (5) and Switch-down (6) are logical modes

and implement the stream-switching controller; in

2 The hybrid system states names are written with a different font.
For instance Greedy refers to the logical mode, whereas Greedy refers
to the phase.

these states only jumps can occur and a continuous
evolution is forbidden.

The complete model is omitted due to space limitations
and is given in the technical report 3 along with a detailed
explanation of each element.

5. PROPERTIES

In this Section we derive several properties which can be
used to tune the controller parameters. Proofs are omitted
due to space limitations.

Proposition 1. A necessary condition to allow a switch-up
between two adjacent levels li and li+1 is that their relative
difference (li+1 − li)/li is less than or equal to TM/Sf .

Remark 2. This property must be considered in the design
of the video level set L , the throttling TM and the safety
factor Sf .

Proposition 3. A sufficient condition for the boundedness
of the playout buffer length q(t) is that:

τ2
τ1
<

1− Tm
TM − 1

. (8)

Remark 4. In Finamore et al. (2011) it has been shown
that in 80% of the Youtube video sessions users do not
watch the entire video. Thus, from the point of view
of the content distribution network it is important to
prevent large buffering which causes a waste of network
resources. Nevertheless, when (8) holds, the boundedness
of the queue length is ensured.

Proposition 5. Let us assume that an actuation time-delay
τa occurs when a switch-down event is triggered and that
B ≥ l0. A sufficient condition to avoid buffering when a
switch-down event occurs from li to any other level is that
qd > (1− l0/li)τa.

Remark 6. In De Cicco and Mascolo (in press) it has been
shown that the real system is affected by an actuation
delay when switch-up/down events are triggered: the delay
may cause buffering events in some cases. This property
may be used to properly tune the threshold qd, which
is considered an important open issue in De Cicco and
Mascolo (in press, Section V.F).

6. MODEL VALIDATION

In this section we validate the model of the Akamai
adaptive streaming proposed in Section 4.2, that has
been implemented through the Matlab Hybrid Equations
(HyEq) Toolbox Sanfelice et al. (2013). The validation
has been carried out by comparing the dynamics of key
variables of the proposed hybrid automaton model with
the ones of the real system obtained by means of Internet
experiments. We employ the values that are reported in
Table 1.

The experimental results have been obtained by playing
the video “Elephant’s Dream” served by the Akamai
server 4 on a Linux PC equipped with the Linux traffic
shaper tc to enable changing the downlink capacity in
real time (for more information about the testbed and
measurement see De Cicco and Mascolo (in press)). The

3 http://c3lab.poliba.it/downloads/akamai-model-tr.pdf
4 http://wwwns.akamai.com/hdnetwork/demo/flash/default.html



Table 1. System parameters symbols

Symbol Description Value

L video level set {0.3, 0.7, 1.5, 2.5, 3.5}Mbps
Sf safety factor 0.2
B constant available

bandwidth
no fixed value

Q
u

eu
e

qT setpoint 7s
qd switch-down

threshold
4s

qh Refilling threshold 12s

T
h

ro
tt

li
n

g TM Greedy throttling 5
Tm Large Queue

throttling
0.1

TB Buffering throttling 2

T
im

er
s

d
u

ra
ti

o
n

τNU Normal phase after
switch-up

10.5s

τGU Greedy phase after
switch-up

3.5s

τND Normal phase after
switch-down

6.5s

τGD Greedy phase after
switch-down

8.5s

135 140 145 150 155 160 165 170 175
0

1

2

3

4

r(
t)

 [
M

b
p
s
]

Akamai

Model

g
re

e
d
y

c
lo

s
e
d
 l
o
o
p

g
re

e
d
y

c
lo

s
e
d
 l
o
o
p

c
lo

s
e
d
 l
o
o
p

Figure 4. Zoom of the rate evolution

client host was connected to the Akamai server through
our campus wired connection.

6.1 Validating the switch-up event

In this experiment we increase the downlink bandwidth
from 400kbps to 4000kbps at t = 0s with the aim of
provoking a video level switch-up event from l0 = 300kbps
to l3 = 2500kbps. The initial queue length q(0) has been
set to 14s. Figure 3 compares the dynamics of the queue
(Figure 3 (left)), the received rate (Figure 3 (center)), and
the video level and estimated bandwidth (Figure 3 (right)).

Let us consider Figure 3 (left), which shows the queue
evolutions. The figure shows two alternating dynamics:
during the first phase, which in our model corresponds
to the Closed Loop state, the queue follows an exponential
decrease dynamics, whereas in the second phase, corre-
sponding to the Greedy state, the queue increases linearly.
The figure shows that the simulated system models accu-
rately the real system after the transient: at steady-state
the queue oscillates within the range [7.8, 9.6]s.

Figure 3 (center) compares the evolution of the received
rate. The figure shows that during the Closed Loop state
the rate evolution is contained within the same range
[1535, 2585]kbps (delimited by the dashed lines) for both
the model and the real system. To get a further insight,
we provide a zoom of Figure 3 (center) in Figure 4, which

shows that the rate dynamics changes according to the
logical state. In particular, the figure confirms that: 1) the
spikes of the measured received rate are well modelled by
the Greedy phase; 2) the modelled rate dynamics fits well
the measured received rate during the Closed Loop phases.

Finally, we consider Figure 3 (right) that shows the esti-
mated bandwidth and the video level time evolution. It
takes around 70s to the system to switch up from l0 to l3.
The proposed model selects the same video level l3 in re-
sponse to the sudden increase of the available bandwidth,
with a shorter transient time of 25s. This difference is due
to the presence of the actuation delay τa in the real system,
which has been neglected in the proposed model.

6.2 Validating the switch-down event

In this experiment the downlink bandwidth experiences
a step-like decrease from 4000kbps to 1000kbps at time
t = 0s to provoke a switch-down event from l3 = 2500kbps
to l1 = 700kbps. The initial queue length q(0) has been set
to 7s. In Figure 5 a comparison between the experimental
result and the simulation is shown. As before, we compare
the dynamics of the queue, the received rate and the video
level.

Figure 5 (left) shows the queue evolutions. Similarly to
what we have described in Section 6.1, two alternating
dynamics are displayed at steady state: a phase of expo-
nential decrease, which corresponds to Closed Loop, and
a phase of linear increase, which corresponds to Greedy.
Also in this scenario, the simulation results confirm that
the proposed hybrid automaton models the real system
accurately.

Figure 5 (center) shows the received rate evolutions. This
figure confirms that the duration of the timers which
trigger the start and the end of the Normal and Greedy
phases change after a switch-down event. In particular,
the Greedy phase duration increases, whereas the Normal
phase decreases. We argue that by increasing the duration
of the Greedy phase the queue can be filled more quickly.

Figure 5 (right) shows the estimated bandwidth and video
level behavior. The real control system is about 10s slower
in the video level switch-down from l3 to l1 due to the
unmodelled actuation time-delay.

7. CONCLUSION

In this paper we have proposed a closed loop hybrid
model of the adaptive streaming system employed by Aka-
mai. The model has been validated by comparing simula-
tions and experimental results obtained in a bandwidth-
controlled testbed scenario. Moreover, we give insights
on the tuning of the controller parameters by deriving
some key properties. In particular, we show that: 1) video
playback interruptions due to actuation delays can be
avoided by properly tuning the queue threshold employed
by the controller; 2) large buffering, which wastes network
resources, can be avoided by properly setting the ratio
between the duration of Greedy and Normal phases; 3) a
condition on the relative distance between two adjacent
video levels has to be satisfied to ensure the reachability
of all the video levels.



0 50 100 150 200 250
0

10

20

[s
]

Akamai

 

 

q(t) q
T

q
d

0 50 100 150 200 250
0

10

20

[s]

[s
]

model

 

 

q(t) q
T

q
d

0 50 100 150 200 250
0

2

4

r(
t)

 [
M

b
p

s
]

Akamai

0 50 100 150 200 250
0

2

4

[s]

r(
t)

 [
M

b
p

s
]

model

0 20 40 60 80 100
0

1

2

3

4

5

[M
b

p
s
]

Akamai

 

 

b̂(t) l (t)

0 20 40 60 80 100
0

1

2

3

4

5

[s]

[M
b

p
s
]

model

 

 

b̂(t) l (t)

Figure 3. Queue length (left), received rate (center), video level and estimated bandwidth (right) in the case the downlink
capacity increases from 400kbps to 4000kbps at t = 0s

0 50 100 150 200 250
0

10

20

[s
]

Akamai

 

 

q(t) q
T

q
d

0 50 100 150 200 250
0

10

20

[s]

[s
]

model

 

 

q(t) q
T

q
d

0 50 100 150 200
0

0.5

1

r(
t)

 [
M

b
p
s
]

Akamai

0 50 100 150 200
0

0.5

1

[s]

r(
t)

 [
M

b
p
s
]

model

0 20 40 60 80 100
0

1

2

3

4

5

[M
b

p
s
]

Akamai

 

 

b̂(t) l(t)

0 20 40 60 80 100
0

1

2

3

4

5

[s]

[M
b

p
s
]

model

 

 

b̂(t) l(t)

Figure 5. Queue length (left), received rate (center), video level and estimated bandwidth (right) in the case the downlink
capacity decreases from 4000kbps to 1000kbps at t = 0s

REFERENCES

Akhshabi, S., Anantakrishnan, L., Dovrolis, C., and Be-
gen, A.C. (2012). What happens when http adaptive
streaming players compete for bandwidth? In Proc. of
ACM NOSSDAV ’12, 9–14.

Cisco (2012). Cisco visual networking index:forecast and
methodology 2012-2017.

De Cicco, L., Caldaralo, V., Palmisano, V., and Mascolo,
S. (2013). Elastic: a client-side controller for dynamic
adaptive streaming over http (dash). In Proc. of Packet
Video Workshop ’13.

De Cicco, L. and Mascolo, S. (in press). An adaptive
video streaming control system: Modeling, validation,
and performance evaluation. IEEE/ACM Transactions
on Networking.

De Cicco, L., Mascolo, S., and Palmisano, V. (2011).
Feedback control for adaptive live video streaming. In
Proc. of ACM MMSys 2011, 145–156.

Finamore, A., Mellia, M., Munafò, M.M., Torres, R., and
Rao, S.G. (2011). Youtube everywhere: Impact of device
and infrastructure synergies on user experience. In Proc.
of ACM IMC ’11, 345–360.

Jiang, J., Sekar, V., and Zhang, H. (2012). Improving
fairness, efficiency, and stability in http-based adaptive
video streaming with festive. In Proc. of CoNEXT ’12,
97–108.

Li, Z., Zhu, X., Gahm, J., Pan, R., Hu, H., Begen, A.C.,
and Oran, D. (2014). Probe and adapt: Rate adaptation
for http video streaming at scale. IEEE Journal on
Selected Areas in Communications, 32(4), 719–733.

Lygeros, J., Johansson, K.H., Simic, S.N., Zhang, J., and
Sastry, S.S. (2003). Dynamical properties of hybrid
automata. IEEE Transaction on Automatic Control,
48(1), 2–17.

Mascolo, S. (1999). Congestion control in high-speed
communication networks using the smith principle. Au-
tomatica, 35(12), 1921–1935.

Sanfelice, R., Copp, D., and Nanez, P. (2013). A toolbox
for simulation of hybrid systems in matlab/simulink:
hybrid equations (hyeq) toolbox. In Proc. of HSCC ’13,
101–106.

Sodagar, I. (2011). The MPEG-DASH Standard for Multi-
media Streaming Over the Internet. IEEE MultiMedia,
18(4), 62–67.


