Abstract—End-to-end rate-based congestion control algorithms are advocated for audio/video transport over the Internet instead of window-based protocols. Once the congestion controller has computed the sending rate, all rate-based algorithms proposed in the literature schedule packets to be sent spaced at intervals that are equal to the inverse of the desired sending rate. In this paper we show that such an implementation exhibits a fundamental flaw. In fact, scheduling the sending time of a packet is affected by significant uncertainty due to the fact that it is handled by the Operating System, which manages a CPU shared by other processes. To overcome this problem, the Rate Mismatch Controller (RMC) is designed aiming at countering the disturbance on the effective sending time due to the CPU time-varying load. Experimental results using Linux OS highlight the effectiveness of the proposed controller.

I. INTRODUCTION

Today, the most part of the Internet traffic is handled by the TCP [1], which implements a congestion control protocol [15] that has been extremely successful to guarantee network stability without admission control. The TCP congestion control is a window-based protocol that sends a window W of packets every time T_k an acknowledgment packet is received. This behaviour originates the bursty nature of the TCP, i.e. the fact that packets are sent in bursts of length $W(T_k)$. From the point of view of the network, the burstiness of the TCP increases network buffer requirements since queue sizes at least equal to the order of $W(T_k)$ must be provided for efficient link utilization. Sending a burst of $W(T_k)$ packets is simple to be implemented but it is not appropriate from the point of view of both router buffer sizes and users of real-time applications.

Today there are two active forces that are pushing towards the reduction of TCP burstiness: one is the spreading of gigabit networks for which burstiness mitigation means an important reduction of network buffer sizes; the other is the evolution of Internet from being an efficient platform for best-effort data delivery also to one for multimedia time-sensitive content [2], [3], [4].

In order to reduce traffic burstiness induced by window-based congestion control, rate-based congestion control algorithms have been proposed as a valid alternative to window-based algorithms for transporting multimedia contents.

Whit rate-based algorithms, packets are sent equally spaced in time at interval proportional to the inverse of the sending rate. The sending rate r_c is computed every sampling time, i.e. every RTT, or every time a feedback report (or ACK) packet is received from the network or from the receiver. Feedbacks can be implicit, such as timeouts or DUPACKs, or explicit such as Explicit Congestion Notification (ECN) [22]. Once the sending rate r_c is computed, it is passed to a sending engine, or send loop, which is in charge of scheduling packets queued in the transmission buffer at the specified rate r_c.

Several rate-based schemes have been proposed in literature for the transport of multimedia streams [16], [12], [13], [18], [24] but much less attention has been devoted to the implementation at user space of a rate-based congestion control algorithm. This may be at the root of the fact that, up to now, there is no evidence that a rate-based protocol is emerging as a widespread adopted solution. In fact, it is worth noting that YouTube employs standard TCP for delivering videos; peer-to-peer video distribution systems, which accounts for the 65% of the peer-to-peer traffic that in turn accounts for 60% of the Internet traffic [21], also employs TCP even though the use of TFRC had been long debated [9], [29]. Finally, Skype audio/video implements proprietary congestion control mechanisms at application layer over the UDP protocol [10], [11].

The analysis or design of rate-based congestion control algorithms is out of the scope of this paper which indeed focuses on implementing a congestion control algorithm at application level over a general purpose Operating System (OS). The problem here is that the unpredictable CPU load, which is due to other processes that share the CPU, prevents exact timing in packet sending. A significant experiment reported in the paper shows that a required constant sending rate can in practice turn into an effective sending rate that is as low as one half of the desired one. In order to overcome this issue, the Rate Mismatch Controller (RMC) is proposed aiming at producing an effective sending rate $r_c(t)$ that efficiently tracks the rate $r_c(t)$ computed by a rate-based congestion control algorithm. It is worth noting that we are focusing on application layer protocols that are usually implemented in the user space in order to be portable on different platforms. The fact that the protocol runs in user space increases the effects of the interaction between the OS and the application.

The rest of this paper is organized as follows: in Section II the state of the art of the proposed solutions in the literature is presented; in Section III we focus on defining implementation
Algorithm 1 Send loop proposed in RFC 3448

Let us define:
\[\Delta = \min \left(\frac{t_{ipi}}{2}, \frac{t_g}{2} \right) \quad (2) \]

and \(t_g \) as the o.s. timer granularity. The algorithm follows:
1) Send k-th packet at time \(t_k \);
2) Evaluate \(t_{ipi,k} = \frac{p}{r_c(t_k)} \) so that the k+1-th packet should be sent at time \(t_{k+1} = t_k + t_{ipi,k} \);
3) Check the system time \(t_{now} \), evaluates \(\Delta \) by using (2) and if \(t_{now} > t_{k+1} - \Delta \):
 a) send the packet immediately
 b) otherwise, schedule a timer whose length is \(t_{k+1} - t_{now} \);
4) When the timer expires the algorithm restarts in 1.

Algorithm 1 Send loop proposed in RFC 3448

and issues of send loops; in Section IV we propose the RMC and we perform a mathematical analysis in order to prove the effectiveness of the proposed controller; Section V provides a performance evaluation of the proposed controller carried out by using the Linux OS; finally, Section VI summarizes the main results found in this work.

II. RELATED WORK

Research on rate-based congestion control algorithms has been active since a decade and has produced a significant amount of literature [12], [13], [18], [24]. In comparison, issues raised by the implementation of a rate-based sending protocol have received less attention.

The first simple solution to the issue of implementing a rate-based congestion control can be found in [24], where a rate-based congestion control protocol named Rate Adaptation Protocol (RAP) is proposed. In that paper, authors suggest to evenly space packets at intervals equal to the inter-packet interval (IPI) \(t_{ipi} \), which is computed as follows:
\[t_{ipi} = \frac{p}{r_c(t)} \quad (1) \]

where \(p \) is the packet size and \(r_c(t) \) is the rate determined by the congestion controller. Equation (1) implies that the highest rate the closest the packets should be sent in order to reflect the instantaneous sending rate \(r_c(t) \). At first glance, this simple algorithm seems to be able to provide a sending rate that matches \(r_c(t) \) and mitigates burstiness. However, as it will become more clear shortly, the algorithm neglects the important feature that a general purpose OS cannot guarantee perfect timing in packet sending due to other processes and timer granularity.

An improved algorithm addressing the issue of implementing a rate-based congestion control is presented in [13] where a send loop is proposed to implement the rate-based TCP Friendly Rate Control (TFRC) algorithm. The proposed solution is shown in Algorithm 1.

The algorithm is based on the one proposed in [24] but it considers for the first time the uncertainty of the inter-packet intervals due to the fact that the send loop process shares the CPU with other processes.

In particular, TFRC proposes an infinite loop to schedule packet sending according to the following algorithm: as the first step a packet is sent at time \(t_k \), then (step 2) the next scheduling time \(t_{k+1} \) is evaluated as \(t_k + t_{ipi,k} \), where \(t_{ipi,k} = p/r_c(T_k) \).

At this time (step 3) the algorithm checks for the system time \(t_{now} \), using an OS system call, and if the current time \(t_{now} \) is greater than the next scheduling time \(t_{k+1} \) less than an amount of time equal to \(\Delta \) given by (2), the packet is sent immediately, otherwise a timer is scheduled whose length is \(t_{k+1} - t_{now} \).

We interpret the step 3.a as a heuristic aiming at anticipating the packet sending time to compensate when the sending times are delayed due to imprecise timers. Moreover, an additional note in [13] considers the case when \(t_{ipi} \) is too small, i.e. \(t_{ipi} \) is less than the granularity \(t_g \) of the OS, because the rate is high. In such cases authors recommend to send short bursts of several packets separated by intervals of the OS timer granularity.

TCP pacing is another technique aiming at spacing packets sending in order to mitigate burstiness when window-based congestion control protocols are used [6], [14], [19]. In fact, TCP produces a very bursty traffic when accessing high-speed networks that can lead to link underutilization and high packet losses in case router buffers are not large enough. Recently, it has been shown that sub-RTT time scale burstiness that are due to the nature of the TCP packet sending mechanism can lead to macroscopic effects on steady state bandwidth sharing [28]. TCP pacing evenly spaces a congestion window worth of packets in a RTT by scheduling timers whose length is equal to \(RTT/cwnd \). The implementation issues affecting this technique have been studied in [27],[17]. In particular, [27] points out that software timer based approaches are not accurate enough when high rates need to be produced. The solution proposed in the paper is a module executed in kernel space, which inserts dummy packets between real packets in order to implement packet pacing. Dummy packets have to be later discarded by the switch where the network interface card (NIC) is connected. The proposed solution becomes very involved when multiple flows access the same link because in this case packet gaps length have to be recalculated accordingly [27]. In [17] authors propose a solution that needs an ad-hoc designed NIC and modifications to the operating system and to packet headers in order to be implemented.

III. SEND LOOP ISSUES FOR RATE-BASED APPLICATIONS

The TCP window-based congestion control evaluates and immediately sends the amount of data \(W(T_k) \) when an ACK, a DUPACK (duplicate ACK) or a cumulative ACK is received at time \(T_k \). In this case the sending of packets is ACK-clocked and there are no open implementations issues. On the other hand, in the case of rate-based congestion control algorithms a stream of packets has to be sent at rate \(r_c(t) \) by scheduling packets to be sent at precise instants using timers. For this
reason, in the case of rate-based congestion control, packets are sent using a send loop that is asynchronous wrt to the receipt of ACK packets.

Fig. 1 shows a high-level model of the network congestion control machinery that is made of the following components:

1) a generic congestion control algorithm, acting as the controller, that decides the appropriate sending rate \(r_e(t) \) based on the feedback, being it implicit or explicit, provided by the network;
2) a block named Sending Engine (or send-loop) representing the actuator of the control system, required to implement packet sending at rate \(r_e(t) \);
3) the network that represents the plant.

In the case of a window-based congestion control, the Sending Engine block injects the whole amount of data \(W(T_k) \) immediately on ACK reception. On the other hand, in the case of rate-based control, the Sending Engine has the difficult task of providing a packet sending rate close to the one computed by the controller in the presence of timers affected by uncertain duration.

Let us assume that at time \(T_k \), the send loop has to schedule packets to be sent so that the resulting rate matches \(r_e(T_k) \) during the time interval \([T_k, T_{k+1}]\). Let us define the packet sending policy as the set \(P_k = \{p_i^{(k)}, t_i^{(k)}\}[0 \leq i \leq n_k] \) with \(T_k = t_0^{(k)} < t_1^{(k)} < \ldots < t_{n_k}^{(k)} = T_{k+1} \), indicating that at time \(t_i^{(k)} \) a packet of size \(p_i^{(k)} \) has to be sent. We define a packet scheduling policy to be zero-bursty, if it is allowed to schedule just one packet at once, that is, \(\forall i \in \{1, \ldots n_k\}, \forall k : t_i^{(k)} \neq t_{i+1}^{(k)} \) and such that the packets in each interval are evenly spaced. It is important to notice that in order to schedule the packet \(p_i^{(k)} \) to be sent at time \(t_i^{(k)} \) a timer will be set at time \(t_{i-1}^{(k)} \) whose length is \(t_i^{(k)} - t_{i-1}^{(k)} \). Thus, we can say that in order to have a zero-bursty scheduling policy, given \(p_i^{(k)} \) and \(r(T_k) \) we have to schedule \(n_k \) timers of equal lengths. It will soon become clear that the zero-bursty scheduling cannot be enforced for any given \(r(T_k) \).

The simple send loop employed by [24], [13] does not take into account some key implementation issues.

In first instance, the send-loop has to schedule a timer whose duration becomes smaller and smaller when the rate increases. However, timer durations are lower bounded by the OS timer granularity \(t_g \) that depends on the frequency the CPU scheduler is invoked. By noting that typical values for \(t_g \) are in the order of 1−10ms, (1) gives the maximum achievable rate:

\[
 r_{\text{max}} = \frac{p}{t_g}
\]

Equation (3) implies that even with a timer granularity as low as 1 ms and a packet size \(p = 1500 B \) a maximum rate \(r_{\text{max}} \) of 12 Mbps is obtainable.

Let us take a closer look at the way the CPU scheduler assigns processes to the CPU. When a process is running but the CPU is not assigned to it, the process is said to be in the wait queue. The amount of time a process spends in the wait queue before obtaining again the CPU is defined as waiting time \(t_w \) and it depends on the CPU load [23]. For this reason, if a process schedules a sleep timer whose nominal duration is \(T \) seconds, the process will be actually assigned again to the CPU after \(T + t_w \) seconds.

Therefore, the actual packet sending rate produced by the send loop is affected by the OS load, which acts as a disturbance on the send loop. In particular, the effective rate \(r_e \) is determined as \(r_e = p/(T + t_w) \), which is less than \(r_e \).

Fig. 3 shows how the scheduled sleep timer of length \(t_{\text{spi}}^{(k)} \) is
affected by the waiting time \(t_{w} \), which significantly degrades the performance of the rate-based control.

It is important to notice that the entity of the disturbance that is due to the interactions with the operating system depends on the particular implementation of the OS process scheduler and on the way timers are handled.

In order to further illustrate these concerns, we have implemented a simple send loop under the Linux 2.6.19 OS\(^1\), which schedules a packet to be sent every \(T \) seconds, and we have logged the actual rate achieved for different nominal rates. Let \(r_c \) denote the nominal rate so that the sleep time is calculated as \(p/r_c \), whereas the relative error is evaluated as \(100\cdot (r_c - r_c)/r_c \). Fig. 4 shows the effect of the sleep time \(T \) on the relative rate error. In particular, when the nominal timer length \(T \) approaches the OS timer granularity \(T_0 \) the relative rate error increases up to 53\%. It is worth noticing that when the tests were run, the system CPU was idle, so that the disturbance was due only to the operating system scheduler. Moreover, the Linux scheduler offers advanced features designed to implement a low latency OS such as kernel preemption, \(o(1) \) complexity and dynamic task prioritization as Symbian to name one, which is characterized by a timer granularity of \(\sim 15\,\text{ms} \) [26].

It is worth to notice that the concerns we have discussed here, have been also recently addressed in a thread on the DCCP IETF working group mailing list [25] and no solution has been found yet.

For these considerations, in order to actuate the sending rate evaluated by the congestion controller, it is necessary to design a mechanism that is able to counteract the uncertainty in timer expirations especially when timer durations are close to the OS timer granularity, as it happens in the case of high rates.

In the next Section we design a feedback controller able to compensate the disturbance acting on the exact timer expiration due to OS timer granularity and load.

IV. The Rate Mismatch Controller

In this Section we propose a controller having the goal of producing an effective sending rate \(r_e(t) \) that efficiently tracks the rate \(r_c(t) \) computed by a rate-based congestion control algorithm. As we have already discussed, this goal is not trivial due to the fact that the code in charge of sending packets is executed by a CPU that is shared by other concurrent processes and managed by the OS.

Fig. 5 shows the block diagram of the feedback loop in which the Rate Mismatch Controller (RMC) is introduced in order to reject the disturbance \(d_{cpu}(t) \), which models the effect on exact timing of packet sending.

The effective rate \(r_e(t) \) is measured and compared to the desired rate \(r_c(t) \) to give the error, i.e. the rate mismatch, \(e(t) = r_c(t) - r_e(t) \) that acts as the input of the RMC. The Rate Mismatch Controller evaluates the rate \(y_r(t) \) the send loop should provide in order to counteract the disturbance \(d_{cpu}(t) \).

For the sake of simplicity, and in view of the fact that the controller has to be discretized and implemented in a code, we propose the simplest control law that is able to reject a step disturbance, that is an integral control law with gain \(k_r \):

\[
y_r(t) = k_r \int_0^t e(\tau) d\tau
\]

Integral control action is widely employed in processes where the output is required to track the set point with a zero steady state error. When an integral action is employed, the output of the controller automatically varies until it reaches the value that is required to steer to zero the steady state error.

The role of the controller gain \(k_r \) is to weight the integral action: if \(k_r \) is small the error will vanish slowly, whereas a large value of \(k_r \) will steer the error to zero more rapidly. However, the value of \(k_r \) cannot be made too high, because the output of the controller may become unstable.

In the following the control law (4) is first discretized and then implemented in the proposed send loop. A stability analysis of the closed loop system is also provided.

\(^1\)We have used a Linux Kernel compiled with a timer frequency of 1000 Hz, so that the OS timer granularity is 1 ms.
A. Discretization of the controller

The control law (4) must be discretized in order to be implemented in the send loop. By substituting \(c(t) = r_c(t) - r_e(t) \) in (4) it turns out:

\[
y_r(t) = k_r \left(\int_0^t r_c(\tau) d\tau - \int_0^t r_e(\tau) d\tau \right)
\] (5)

When we have described the model in the continuous time domain (Fig. 5) we assumed that the actual rate \(r_c(t) \) was available as a feedback signal. However, in practice the send loop sends packets so that the integral of the actual rate \(r_c(t) \):

\[
d_e(t) = \int_0^t r_c(\tau) d\tau
\] (6)

which is the amount of data \(d_e(t) \) that has been injected in the network until the time \(t \), is already known. By combining (5) and (6), we obtain:

\[
y_r(t) = k_r \left(\int_0^t r_c(\tau) d\tau - d_e(t) \right)
\] (7)

Another motivation of choosing a simple integrator controller is now clear: the variable \(\text{bytes}_\text{sent} \) \(d_e(t) \) is available and updated every time a packet is sent and it is not affected by any measurement error.

To complete the discretization of (7) we need to discretize the integral \(\int_0^t r_c(\tau) d\tau \) that can be done by using the backward Euler method:

\[
d_e(t_k) = d_e(t_{k-1}) + (t_k - t_{k-1}) r_c(t_k)
\] (8)

where \(t_k \) indicates the \(k \)-th sampling time and \(d_e(t_k) \) the discretized integral of \(r_c \).

The discretization of \(d_e(t) \) is straightforward:

\[
d_e(t_k) = d_e(t_{k-1}) + b_s(t_k)
\] (9)

where \(b_s(t_k) \) is the amount of data effectively sent in the \(k \)-th time interval.

Finally, it should be noted that the feedback variable \(d_e(t_k) \) is delayed by one sample interval. In fact, when sending data at time \(t_k \) the amount of data \(d_e(t_{k-1}) \) sent until the previous sampling time \(t_{k-1} \) is known.

Thus, the discretized control is as simple as:

\[
y_r(t_k) = k_r (d_e(t_k) - d_e(t_{k-1}))
\] (10)

The variable \(d_e(t_k) \) indicates the amount of data that the send loop should have sent until time \(t_k \), whereas \(d_e(t_k) \) indicates the data effectively sent until time \(t_k \) that is affected by the disturbance due to the CPU. In this sense the control law (10) can be seen as a proportional control of the data mismatch \(d_e(t_k) - d_e(t_{k-1}) \) that is equivalent to the integral control on the rate mismatch (4).

The control action expressed by (10) can be intuitively interpreted as follows: a fraction of the amount of data that have not been sent at time \(t_k \) because of the disturbance \(d_{cpu} \) will be sent at the time \(t_{k+1} \) thus being able to control the error.

By considering equations (10), (8) and (9) the block diagram of the RMC represented in Fig. 6 can be easily derived.

In the following two propositions are derived regarding the controlled system shown in Fig. 6: the first proposition derives the stability condition for the controlled system; the second proposition shows that step-like disturbances are rejected by the RMC.

Proposition 1: A necessary and sufficient condition for the stability of the proposed controller is \(0 < k_r < 2 \).

Proof: By computing the transfer function between \(R_e(z) \) and \(R_c(z) \) it results:

\[
\frac{R_e(z)}{R_c(z)} = \frac{k_r z}{z - 1 + k_r}
\]

It is well-known that a linear discrete-time system is asymptotically stable if and only if all its poles lie in the unity circle of the complex plane. This turns out the condition that the only pole of the controller \(z = 1 - k_r \) must lie in the unity circle, i.e. \(0 < k_r < 2 \).

Proposition 2: The proposed controller rejects step disturbances \(d_{cpu}(t) = 1(t) \) regardless the value of the controller gain \(k_r \).

Proof: By computing the transfer function between \(D_{cpu}(z) \) and \(R_e(z) \):

\[
\frac{R_e(z)}{D_{cpu}(z)} = \frac{z - 1}{z - 1 + k_r}
\]

and considering that \(D_{cpu} \) is a step disturbance we can write:

\[
R_e(z) = D_{cpu}(z) \frac{z - 1}{z - 1 + k_r} = \frac{z}{z - 1 + k_r}
\]

Finally, it is sufficient to use the final value theorem to obtain the steady state value of the output due to the disturbance \(d_{cpu} \):

\[
r_e(\infty) = \lim_{k \to \infty} r_e(t_k) = \lim_{z \to 1} \frac{z - 1}{z} R_e(z) = 0
\]

B. Send loop implementation

In this Subsection we describe the implementation details of the proposed control equation (4). To the purpose of implementing the control equation (4), we need to execute the send loop in an asynchronous thread every sampling time
Finally, we remark that the proposed solution can be implemented as it is, regardless the particular OS CPU scheduler implementation. On the contrary, Algorithm 1 proposed in [13] relies on t_g that is a variable that depends on the particular implementation of the OS.

V. EXPERIMENTAL RESULTS

In this Section we present an experimental evaluation of the proposed controller running on two different versions of the Linux Kernel, namely 2.6.19 and 2.6.28. We have chosen such kernels because they implement two different scheduler algorithms.

Linux kernels since version 2.6.8.1 up to version 2.6.22 employ an O(1) scheduler that is able to provide scheduling decisions with a fixed upper-bound on execution times regardless the number of tasks to be served [5]. In such schedulers the CPU is always assigned to the task with the highest priority. If other tasks at the same priority exist, a round robin policy with a fixed timeslice is employed to serve those tasks.

On the other hand, Linux kernels since version 2.6.23 employ a novel scheduler called Completely Fair Scheduler (CFS) [20] whose rationale is gathered by the fair queuing algorithm proposed for bandwidth allocation by Nagle. Differently from the O(1) scheduler discussed above, the CFS tries to minimize the wait time of each task by assigning the CPU to the process that has waited for the largest amount of time. For this reason CFS is able to provide shorter waiting times with respect to the O(1) scheduler.

In order to evaluate the performance of the RMC we have implemented the send loop described in Section IV in a C user space application. The send loop proposed in RFC 3448 [13] has been carefully implemented by also taking into account the heuristic in step 3.a of Algorithm 1. In particular we have implemented two versions of the send loop described in Algorithm 1:

1) RFC 3448 (No bursts), does not take into account the issue due to the granularity t_g and it keeps sending one packet per iteration spaced by $t_{ipi} = \frac{p}{r_c}$ even when t_{ipi} is less than the timer granularity t_g;
2) RFC 3448 (Bursts), when $t_{ipi} < t_g$, t_{ipi} is set to $\min(p/r_c, t_g)$ and a burst whose length is $b = r_c \cdot t_g$ is sent as proposed\(^2\) in [13].

We have tested two different scenarios:

1) A constant sending rate r_c is required: the effective sending rate produced by RFC 3448 (No Burst), RFC 3448 (Bursts) and RMC are compared;
2) A variable sending rate r_c is required: in this scenario a sudden drop in the sending rate r_c occurs at time $t = 10$ s and an increase occurs at time $t = 20$ s. This experiment shows the effect of the controller gain k_r on the effective rate $r_c(t)$ dynamics.

\(^2\)When $t_{ipi} < t_g$, [13] suggests: “TFRC may send short bursts of several packets separated by intervals of the OS timer granularity”. The size of the burst to be sent is not specified. However sending a burst of $b = r_c \cdot t_g$ bytes in t_g seconds should produce the rate r_c.

Algorithm 2 Pseudo-code of the proposed Send loop

```java
while (running) {
    r_c = get_congestion_control_rate();
    data_to_send = rmc(r_c);
    bytes_sent = 0;
    while (bytes_sent <= data_to_send) {
        packet = get_packet_from_tx_queue();
        if (data_sent + size(packet) < data_to_send)
            send_packet();
        else
            break;
        bytes_sent = bytes_sent + size(packet);
    }
    rmc_update_data_sent(bytes_sent);
    sleep(T_s);
}
```

Algorithm 3 Pseudo-code of RMC functions

```java
void rmc_update_data_sent (int bytes_sent) {
    rmc_data_sent = rmc_data_sent + bytes_sent;
}

int rmc (float sending_rate) {
    now = gettimeofday();
    rmc_data_calc = rmc_data_calc + sending_rate * (now - t_k);
    t_k = now;
    error = rmc_data_calc - rmc_data_sent;
    return k_r * error;
}
```

T_s. The sampling time is chosen as a fraction of the minimum round trip time RTT_{min} as follows:

$$T_s = \max(\frac{RTT_{min}}{N}, T_{s, min})$$

where $T_{s, min}$ is lower bounded by t_g. It is worth to notice that the lower T_s, the lower is the burstiness generated by the send loop.

The pseudo-code of the proposed send loop is reported in Algorithm 2. At each iteration of the infinite outer loop, the rate mismatch controller evaluates the data to be sent (data_to_send) by using the function rmc(r_c) and the inner loop sends a number of packets without exceeding the amount of data_to_send. At this point the thread sleeps for T_s seconds and then the algorithm continues. Finally, we complete the description of the send loop algorithm by showing the pseudo code of the controller in Algorithm 3.

As in the case of Algorithm 1, the timer duration T_s is affected by error due to OS timer granularity or, worse, it can happen that a context switch allocate the CPU to another process. However, the rate mismatch controller is able to compensate the effects of this disturbance as it will be shown in the next Section.
evaluate the average relative error as:

\[e\% = \frac{r_c - E[r_c(t)]}{r_c} \times 100 \]

where \(E[r_c(t)] \) is the average value of \(r_c(t) \). Fig. 7 (a) and (b) show the average relative error when \(r_c \in R \); the figures show that when the RMC is employed a relative error that is less than 0.06% is provided, which means a channel utilization of 99.94%, regardless the value of \(r_c \) or kernel version employed. On the contrary, RFC 3448 (No Bursts) provides a very high error with the kernel 2.6.19, that can be as high as \(\sim 99\% \), whereas with kernel 2.6.28.1 it goes up to 90%. Now let us consider RFC 3448 (Bursts): Fig. 7 shows that even with sending bursts as large as \(r_c \cdot t_g \) the relative error can be as high as 95% with the kernel 2.6.19 is used, or up to 4% when the kernel 2.6.28.1 is employed.

It is important to notice that even though “RFC 3448 (Burst)” is able to bound the rate mismatch error when the kernel 2.6.28.1 is used, the same algorithm provides an unacceptable error when the kernel 2.6.19 is employed. This is due to the fact that the algorithm proposed in [13] employs a heuristic to cope with the inaccuracy of timers (see Algorithm 1 step 3.a).

Finally, Fig. 8, 9 and 10 compare the effective rate dynamics of the three considered send loops when the desired rate \(r_c \) is set to 500 Mbps.

Fig. 8 shows that when the RMC is employed, the effective rate matches the desired sending rate and a smooth input rate is produced regardless the kernel version employed. On the other hand, Fig. 9 (a) shows that with the algorithm RFC 3448 (No Burst), the effective rate produced by the send

A. The case of a constant required sending rate

The three send loops have been tested considering constant sending rates \(r_c \) in the set \(R = \{1, 10, 100, 200, 400, 500, 600\} \text{Mbps} \). Packet size has been set to \(p = 1500 \text{B} \). For what concerns the only tunable parameter \(k_r \) of the proposed controller we have run experiments by letting \(k_r \in [0.1, 1.9] \). Although results are not reported here for brevity, experiments confirm that the effective rate \(r_e \) matches the desired rate \(r_c \), regardless the value of \(k_r \), as we have shown in Proposition 2. We report here the results obtained by employing a controller gain \(k_r = 1 \). The impact of the controller gain on the effective rate \(r_e(t) \) are shown in the next scenario.

The duration of the experiments is 60 s. In the time interval \([20, 40] \text{s}\) the CPU load is increased to \(\sim 100\% \) by starting five CPU bound (busy-wait) processes in parallel with the send loop.

In order to measure the effectiveness of the controller we
loop is \(\sim 1 \text{ Mbps} \) when Linux kernel 2.6.19 is used. In the case 2.6.28 version is used, Fig. 9 (b) shows that the effective rate provided is \(\sim 105 \text{ Mbps} \) when no concurrent tasks are executed, whereas when the busy wait loops are run the effective rate drops to \(\sim 70 \text{ Mbps} \). Finally, Fig. 10 (a) shows that, even when bursts are sent, the effective rate produced by the send loop is only 25 Mbps in the case of the Linux kernel 2.6.19. In the case of the Linux kernel 2.6.28 Fig. 10 (b) shows that the average effective rate is 492 Mbps; however for \(t > 52 \text{ s} \) the effective rate exhibits remarkable oscillations and produces an effective rate of around 430 Mbps.

B. The case of a step variation of the desired sending rate

This scenario is aimed at showing the effectiveness of the rate mismatch controller when a variable sending rate \(r_c(t) \) is required. In particular, we are interested in showing the responsiveness of the output of the system as a function of the controller gain \(k_r \), i.e. how fast the effective sending rate \(r_e(t) \) is able to match a desired sending rate \(r_c(t) \) that varies rapidly.

In this scenario, the sending rate \(r_c(t) \), that is initially set to the rate \(r_{max} \), is suddenly decreased to the rate \(r_{min} = r_{max}/10 \) at time \(t = 10 \text{ s} \) and it is increased again up to \(r_{max} \) at \(t = 20 \text{ s} \). We have conducted several experiments for \(r_{max} \in \{1, 10, 100, 200, 400, 500, 600\} \text{ Mbps} \) and for \(k_r \in [0.1, 1.9] \) and we show the experimental results in Fig. 11 and 12. The results shown in this Subsection are obtained by using a Linux kernel 2.6.19.

Fig. 11 (a) and (b) show the effective rate dynamics \(r_e(t) \) when a decrease of the desired sending rate \(r_c(t) \) occurs at time \(t = 10 \text{ s} \) in the case \(r_{max} \) is either 100 Mbps or 500 Mbps respectively. Both figures clearly show the effect of the controller gain \(k_r \): as the controller gain increases the transient time that is required to match the desired rate \(r_c(t) \) decreases. However, when \(k_r > 1 \) oscillations occur and the transient time required to match \(r_c(t) \) slightly increases. This is due to the fact that when \(k_r \) increases, the stability margin of the closed-loop system decreases (see Proposition 1) and oscillations occur.

Fig. 12 (a) and (b) are obtained when an increase of the desired sending rate occurs at time \(t = 20 \text{ s} \) in the case \(r_{max} \) is either 100 Mbps or 500 Mbps respectively. The figures confirm the behaviour we have described above. In particular, in the case of \(r_{max} = 100 \text{ Mbps} \) (Fig. 12 (a)) the response shows oscillations of larger entity when \(k_r > 1 \).

In order to quantify the responsiveness of the controller as a function of \(k_r \) we measure the 5% settling time \(t_{s,5\%} \) which is the time required for the response to enter and stay in a range of 5% around the final value of the response\(^3\).

Fig. 13 shows the settling time as function of \(k_r \) in all the considered cases. The figure shows that the settling time decreases from a value of around 0.5 s to a value of around 0.06 s when \(k_r \) increases from 0.2 to 1. When \(k_r > 1 \) the settling time increases up to 0.3 s in the case of \(k_r = 1.8 \).

\(^3\)In the case of a final value of 10 Mbps the 5% settling time is the time required for the response to enter and stay in the range \([9.5, 10.5]\) Mbps.
Therefore, we suggest to employ the simple value of $k_r = 1$ that is able to both provide a smooth effective rate $r_e(t)$ and minimize the transient time required to match the desired sending rate $r_c(t)$.

VI. CONCLUSIONS

In this paper we have shown that the send loop required for implementing end-to-end rate-based congestion control in high-speed networks is affected by remarkable disturbances that must be rejected. To this purpose, we have designed, implemented and tested a Rate Mismatch Controller (RMC) that is able to produce an effective sending rate that matches the computed sending rate. The experimental results have shown that, when no measures are taken to reject the disturbance, the rate relative error can be as high as 99% in the case of high-speed rates, whereas RMC is always able to provide rate relative errors that are less than 0.06%.

For this reason, we consider the RMC as a fundamental building block for the implementation of rate control algorithms regardless the running operating system.

REFERENCES

Fig. 13: Settling time (5%) as function of k_r in the case of a step decrease or step increase of the desired rate.

<table>
<thead>
<tr>
<th>Desired Rate</th>
<th>Pacing Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Mbps / 10 Mbps</td>
<td>10 Mbps / 100 Mbps</td>
</tr>
<tr>
<td>500 Mbps / 50 Mbps</td>
<td>50 Mbps / 500 Mbps</td>
</tr>
</tbody>
</table>

