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ABSTRACT
Millimeter-wave (mmWave) radar sensors produce Point Clouds
(PCs) that are much sparser and noisier than other PC data (e.g., Li-
DAR), yet they are more robust in challenging conditions such as in
the presence of fog, dust, smoke, or rain. This paper presents Milli-
Noise, a point cloud dataset captured in indoor scenarios through a
mmWave radar sensor installed on a wheeled mobile robot. Each
of the 12M points in the MilliNoise dataset is accurately labeled as
true/noise point by leveraging known information of the scenes and
a motion capture system to obtain the ground truth position of the
moving robot. Each frame is carefully pre-processed to produce a
fixed number of points for each cloud, enabling classification tools
which require data with a fixed shape. Moreover, MilliNoise has
been post-processed by labeling each point with the distance to its
closest obstacle in the scene, which allows casting the denoising
task into the regression framework. Along with the dataset, we
provide researchers with the tools to visualize the data and prepare
it for statistical and machine learning analysis.
MilliNoise is available at: https://github.com/c3lab/MilliNoise

CCS CONCEPTS
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sor devices and platforms; • Information systems → Multime-
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1 INTRODUCTION
In the evolving landscape of multimedia systems, the role of 3D data
sources has grown significantly, requiring new ways to capture,
process, and utilize information. Point Cloud (PC) data, produced
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by 3D Light Detection and Ranging (LiDAR) sensors and stereo-
cameras, is a powerful instrument for capturing the features of
three-dimensional scenes. These technologies have induced sig-
nificant advancements in applications encompassing autonomous
navigation and robotics [15, 31], 3D modeling [23], augmented
reality/virtual reality [1, 22, 32], and 6DoF video streaming [12, 29].

Despite their advantages, LiDAR and stereocamera systems are
often challenged by environmental conditions, such as poor visi-
bility in adverse weather or difficulties in detecting transparent or
reflective surfaces [13, 19]. This limits the utilization of such me-
dia content for reliable machine applications. Furthermore, these
technologies may be cost prohibitive and pose concerns regard-
ing power consumption, thus hindering their adoption in mobile
applications.

Millimeter-wave (mmWave) radars are sensors that operate at
wavelengths of the order of millimeters. They are equipped with
transmitter antennas that emit signals and receiver antennas that
capture reflections of these signals. The processing of received
signals enables the generation of a 3D PC that describes the envi-
ronment, including information on the velocity, intensity and orien-
tation of the reflecting objects. Operating within the high-frequency
spectrum, typically ranging from 30 to 300GHz, mmWave radars
are capable of detecting multiple objects, even when they are ob-
structed by other elements. Moreover, these sensors are more robust
in adverse environmental conditions, such as fog, dust, smoke, and
rain [1, 7, 19, 31]. In this paper, we consider Frequency-Modulated
Continuous Waves (FMCW)mmWave sensors with integrated anten-
nas, referred to as Antenna-On-Package (AoP). Unlike conventional
pulse radar sensors, FMCW sensors periodically and continuously
emit chirp signals, instead of short pulses [28]. AoP sensors allow
a compact package, resulting in significantly reduced production
and retail costs, which helped increasing the adoption of mmWave
sensors in several research and industrial fields.

Even though mmWave sensors can be considered as an inter-
esting alternative and complement to LiDAR and stereocamera
systems, especially in mobile scenarios, the PC data they generate
introduces several peculiar challenges. Noise in PC data, usually
caused by sensor limitations, environmental factors, or inherent
system noise, can significantly degrade application quality. More-
over, unlike 3D LiDAR and stereocamera, these sensors provide
sparser PCs, with a reduced amount of details for each detected
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Figure 1: Sensor Pipeline employed to produce PCs from
sensor’s readings

object. In short, mmWave data suffers from key limitations, specifi-
cally (i) the presence of noise and (ii) the sparseness of the acquired
data, which substantially limit the adoption of these data sources
for multimedia systems. It is therefore an open question if we can
use such PC data for machine processing.
Contributions: This work provides accurately labeled sparse PCs
generated by FMCW mmWave radar sensors, to allow the design
of learning-based denoising approaches. To this end, we present
MilliNoise, a dataset that collects different indoor scenarios, such
as wide and narrow hallways, tight and loose turns, and shelves,
built by properly arranging a set of obstacles. Each point in the
MilliNoise dataset is accurately labeled through a motion track-
ing system, allowing the discrimination of points describing actual
objects in the scene from those representing noise, with a sub-
millimeter accuracy. The dataset also includes the intensity and
velocity values for each point captured by the mmWave sensor. Fur-
thermore, we provide point-wise distances to the closest obstacles,
allowing the application of regression methodologies for denoising
the MilliNoise dataset.

2 BACKGROUND ON MMWAVE RADARS
In this section, we briefly present theworking principles ofmmWave
FMCW radars, such as the one used to collect theMilliNoise dataset,
highlighting the way PCs are obtained by processing the radar’s
raw data and the main sources of noise. The interested reader is
referred to [17] for a comprehensive treatment of mmWave FMCW
radar processing.
Working Principles: In a nutshell, the sensor emits a set of signals
to obtain information about the environment. Each signal, referred
to as chirp, is a sinusoidal wave with a frequency that increases
linearly over time. A set of such signals then composes the chirp
frame. Each receiver builds a two-dimensional matrix of 𝑁𝑐 chirps
per frame by 𝑁𝑠 samples per signal. Then, by joining all these
matrices, a three-dimensional matrix, denoted as a radar cube, is
built.

The pipeline employed to produce the PCs from the emitted
chirp frames is shown in Figure 1. The radar cube allows to extract
information such as: the distance and angle of points belonging
to objects in the scene from which the (𝑥,𝑦, 𝑧) coordinates can be
computed, the points’ intensities and velocities.

In particular, the radar cube is analyzed using the Fast Fourier
Transform (FFT). The distance of a given obstacle is associated with
each peak in the cube: the further away the sensor is, the longer

the delay between the emitting and receiving peak [17]. Instead,
the value of each peak identifies the intensity of the related point.

The angle estimation is obtained by considering the angle of
arrival of the same emitted signal on multiple antennas. By leverag-
ing the known physical displacement between antennas, angle can
be extracted by measuring the phase shift of the identical signal
received by different antennas. The radar cube allows estimating
velocity information of the objects by utilizing multiple chirps. In
particular, the velocity of the object reflecting the emitted waves
induces a phase shift of the signals from the same chirp on the
same antenna. Unlike angle estimation, which involves multiple
receivers, this approach leverages the measurements of the phase
shift from a single antenna. Further processing of this phase shift
through the Doppler-FFT, which accounts for the Doppler effect
in the frequency domain, allows the estimation of the velocity of
the observed objects. The final PC will contain a number of points
depending on the number of reflections captured by the receiving
antenna. As a consequence, this procedure generates PCs with a
time-varying number of points.
Main challenges: Similarly to any other PC data, mmWave PCs are
a set of unordered points that lack correlation with their position in
the data structure, thereby inhibiting the application of processing
techniques reliant on this type of positional information.

However, unlike other PCs, mmWave ones present peculiar limi-
tations that pose new challenges for data processing. When dealing
with low-cost mmWave FMCW AoP radars, constraints on antenna
size and their maximum displacements impose limitations on an-
gle and range accuracy. This limitation is evident in the resulting
PCs, where the detected points exhibit improved accuracy when
the angle is sufficiently small (typically in the [−10◦, 10◦] range
in practical scenarios) [18]. Moreover, mmWave sensors are sus-
ceptible to noise, presenting randomly scattered points or artificial
reflections, such as clutter and multipath reflections. This challenge
becomes more prominent in confined indoor spaces where ghost
objects and multipath rays may appear. Effectively addressing noise
is crucial to improve the signal-to-noise ratio and mitigate the risk
of misinterpreting these artifacts as false positives in the process-
ing pipeline. Therefore, the importance of theMilliNoise dataset,
which focuses on indoor scenes, becomes evident. Furthermore,
mmWave PCs are highly sparse, reaching a few hundred points per
frame, instead of the typical several thousand points produced by
depth-cameras and LiDARs [19].

3 RELATEDWORK
Existing mmWave radar datasets fall into two main classes: datasets
for human sensing and datasets for autonomous navigation. In
the former, the datasets [8, 22, 25, 26, 30] consist of sequences
of human activities acquired using a static mmWave radar. They
primarily serve as a base for action recognition applications. By
contrast, autonomous navigation datasets, including ours, involve
a mmWave radar mounted on a moving system, such as a robot
or vehicle, to capture the surrounding 3D space as it moves. The
acquired data is then processed for autonomous navigation tasks.
These navigation datasets are often multimodal, with mmWave
sensors combined with LiDAR or RGB/thermal cameras for richer
information. In this section, we provide an overview of PCs datasets
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Table 1: Comparison of mmWave Datasets for autonomous navigation tasks

Dataset Runs Frames (Points) Environment Annotation
nuScenes [5] 1000 1.3M (N/A) Outdoor Bounding Box
Astyx [20] N/A 500 (N/A) Outdoor Object oriented
CARRADA [21] N/A 12.6k (35M) Outdoor Bounding Box
RadarScenes [24] 158 N/A (N/A) Outdoor Point-Wise
Ghost Dataset [6] 111 N/A (35M) Outdoor Point-Wise (manual)
OdomBeyondVision [16] 119 N/A (N/A) Indoor Not annotated
MilliNoise (ours) 49 58k (11.6M) Indoor Point-Wise sub-mm accuracy

acquired through mmWave sensors for autonomous navigation
systems. A summary of the main features of datasets containing
mmWave PCs for autonomous navigation scenarios is presented in
Table 1 which also includes theMilliNoise dataset presented in this
paper.

Over the last few years, research on autonomous navigation
has benefited from several large-scale LiDAR datasets, such as
KITTI [10] and Waymo [27]. These datasets capture outdoor auto-
mobile scenes as dense PCs and come with high-fidelity annotation
tools [3]. By comparison, radar datasets are not as high-quality due
to the limitations of FMCW radars. More specifically, they suffer
from significantly more noise and are difficult to provide ground-
truth annotations. The nuScenes [5] is a multimodal dataset also
containing radar data. It provides 1000 outdoor scenes, each lasting
20s, with objects annotated with bounding boxes. Astyx [20] is a
smaller dataset of 500 frames containing around 3000 labeled 3D ob-
jects. Data are semi-automatically labeled and manually refined to
provide ground truth annotations. In CARRADA [21], the dataset is
collected using a mmWave sensor synchronized with an RGB cam-
era. The dataset provides a total of 12666 frames, 7193 of which are
annotated. Here, annotations are made by a deep-learning method
and tracked by the SORT algorithm [4]. Similarly, in [14], an auto-
matic label generation based on position, velocities, and previous
semantic annotation for RadarScenes [24] dataset is proposed.

Given the difficulty in providing annotations for mmWave data
in the above datasets, the annotation process is often simplified. The
common approach is either to use a second modality as a reference
(e.g. LiDAR) or based on acquisition characteristics (e.g. based on
the Doppler effect [11]). However, these types of labeling strategies
may lack precision and are therefore not guaranteed to be accurate.
Within this context, the Ghost-Data [15] dataset offers mmWave
PCs manually annotated. The Ghost-Data dataset is an outdoor
dataset of 21 automobile-rehearsed scenarios of the main object (a
pedestrian or cyclist) moving near one or two reflective surfaces.
In-depth knowledge of the scenes allows manually labeling of the
points. The points are not only labeled as real or noise but the noise
points are also labeled according to first or second-order reflection.
However, not all points were labeled. A significant number of points
were simply labeled as “background”.

It is important to note that all the navigation datasets presented
so far have been acquired from outdoor scenes. In the current
literature, there is a gap in datasets of indoor environments for
autonomous navigation. One of the few datasets available for in-
door scenes is the OdomBeyondVision [16]. However, this dataset
was designed specifically for the ego-motion estimation task. The

OdomBeyondVision points are not labeled, which limits research
for navigation tasks beyond ego-motion estimation, such as denois-
ing or obstacle detection.

Our proposed MilliNoise dataset seeks to fill this gap in the
literature by providing point-wise labeled scenes recorded in an
indoor environment. To our best knowledge, MilliNoise is the first
mmWave PC dataset of labeled indoor scenes on long trajectories
and with multiple obstacle positions. Furthermore, given our knowl-
edge of the environment, the labels of the MilliNoise are accurate
with sub-millimeter precision and guaranteed to be correct.

4 THE MILLINOISE DATASET
This section describes the acquisition and pre-processing steps used
to create the MilliNoise dataset, followed by a description of the
dataset features, organization and tools to access and manipulate it.

4.1 CapturingMilliNoise
The MilliNoise dataset has been captured using the acquisition sys-
tem shown in Figure 2. The data has been collected via a mmWave
radar sensor mounted on a mobile robot which followed several
paths generated by a path planning algorithm in indoor scenarios
populated by obstacles placed in an arena equipped with a motion
tracking system.
mmWave Sensor Setup: To capture the surrounding 3D space, a
differential drive robot, the Turtlebot3 Waffle Pi1, has been equipped
with the Texas Instruments’ mmWave sensor AWR6843AOP2. As
shown in Figure 2, the sensor has been mounted in the front of the
robot. The collected data includes not only the points’ coordinates
but also intensity and velocity values for each point (see Section 2).
Motion Tracking Setup: Besides the mmWave sensor data, the po-
sitions of both obstacles and robot are recorded usingVicon Tracker3
motion capture system. This system, based on an array of 8 infrared
cameras, utilizes passive reflective markers to detect and recognize
objects in the scene, providing objects’ pose measurements with an
error below a tenth of a millimeter.
Scenario Setup:We aimed at emulating realistic indoor environ-
ments, such as wide and narrow hallways, tight and loose turns,
shelves and so on. To reach this goal, six courses populated by
several obstacles were implemented using boxes of different sizes
in a 6 × 6 meters arena, thus generating various possible scenarios.

Formally, a scenario is defined by a set of obstacles 𝑂𝑖 (𝑖 =

1, . . . , 𝑁 ) properly arranged in the environment. Figure 3 depicts

1https://www.robotis.us/turtlebot-3-waffle-pi/
2https://www.ti.com/product/AWR6843AOP
3https://www.vicon.com/software/tracker/



MMSys ’24, April 15–18, 2024, Bari, Italy Walter Brescia, Pedro Gomes, Laura Toni, Saverio Mascolo, and Luca De Cicco

Figure 2: The MilliNoise dataset acquisition system

Figure 3: Scenario definition

the robot next to the 𝑖-th obstacle and reports the notation we use to
define a scenario.𝑋𝑌 is the coordinate system of the motion tracker,
which we define as the global coordinate system. Each obstacle 𝑂𝑖

in the scene is defined as follows:

𝑂𝑖 = (𝑥𝑂𝑖
, 𝑦𝑂𝑖

, 𝜃𝑂𝑖
,𝑤𝑂𝑖

, ℎ𝑂𝑖
) (1)

where 𝑥𝑂𝑖
and 𝑦𝑂𝑖

are the coordinates of the origin of the obstacle
in the global coordinate system, 𝜃𝑂𝑖

denotes the orientation of
the obstacle with respect to the global coordinate system, 𝑤𝑂𝑖

and ℎ𝑂𝑖
are the width and the height of the object, respectively.

The robot position and orientation in the global coordinate system
is given by the tuple (𝑥𝑅, 𝑦𝑅, 𝜃𝑅). Notice that the origin of the
robot’s coordinate system 𝑋𝑅𝑌𝑅 is placed on the sensor. The point
clouds acquired by the mmWave sensor as the robot moves in the
environment are expressed in the robot’s coordinate system.

Figure 4 shows the six scenarios collected in the MilliNoise
dataset. For each of those scenarios, several collision-free paths
were generated using Dijkstra’s path planner, a state-of-the-art
algorithm for global path planning. These paths were traversed by
the robot using the Adaptive Monte Carlo Localization (AMCL) [9]
while capturing PCs produced by the mmWave sensor.

We denote each instance of a robot traversing a given scenario
as a run. Given the combined use of tracking and mmWave sensors,
each run contains the scene’s global information as well as the

robot’s individual “perspective”. This is, each run contains: (i) the
time-varying pose of the robot (𝑥𝑅, 𝑦𝑅, 𝜃𝑅) and the fixed position
of the obstacles (𝑥𝑂𝑖

, 𝑦𝑂𝑖
, 𝜃𝑂𝑖

) in the global coordinates reference
system; (ii) the point clouds of the robot surroundings in the robot’s
coordinate system. Finally, notice that data have been captured at
2Hz associating them to the current timestamp. Every point cloud
captured from the mmWave sensor in this time window is collected
under the same frame.

4.2 Point Cloud Pre-Processing
In order to simplify the elaboration of the PCs, the sensor’s firmware
has been modified to consistently produce a fixed number of points
per cloud frame. In particular, the number of points captured by
the sensor for each frame was set at 200. Given the specific sce-
narios under consideration (i.e. short range), the number of points
produced by the sensor for each cloud may fall below the desired
target number.

Augmenting the desired number of points is a non-trivial task;
the additional points introduced should align with the distribution
of points actually captured by the sensor. It is worth noting that,
due to the sparsity inherent in the PC generated by these sensors,
each PC describes multiple regions, often associated to different
objects in the scene. As a consequence, rather than considering the
distribution of the whole PC, we consider the distribution of points
within each smaller region.

To this end, we employ the Agglomerative Hierarchical Clustering
(AHC) [2] algorithm to reliably generate new points that maintain
the integrity of the original PC in terms of both shape and distri-
bution. AHC is a hierarchical clustering method commonly used
for data grouping. It follows a bottom-up search, iteratively “ag-
glomerating” the closest data points. For each detected subgroup of
points, the algorithm computes the centroid which is added to the
PC with fixed fake velocity and intensity values. This allows one
to differentiate between the original points and those artificially
added to reach the desired total points in the PC.

4.3 Data Labeling
One of the main advantages of MilliNoise is the accurate point-
wise annotation. We use the scene information provided by the



MilliNoise: a Millimeter-wave Radar Sparse Point Cloud Dataset in Indoor Scenarios MMSys ’24, April 15–18, 2024, Bari, Italy

(a) Scene 1 (b) Scene 2 (c) Scene 3

(d) Scene 4 (e) Scene 5 (f) Scene 6

Figure 4: Example runs of each of the six scenes available in the MilliNoise dataset. Obstacles are shown in red. Clean (noise)
points are shown in yellow (blue). The trajectory followed by the robot is shown with a dashed line.

tracking system, i.e. the poses of the obstacles and mobile robot, to
annotate the point cloud acquired by the mmWave radar. To this
end, we roto-translate each point cloud acquired by the mmWave
sensor from the robot coordinate system to the global coordinate
system. After appropriate roto-translation and based on the known
placement of obstacles, it is possible to automatically label each
point as real or noise, as well as compute the distance of the point
to the closest obstacle. Below, we describe how the two labels are
assigned.
Real orNoise Label:Given the obstacles and points’ roto-translated
positions, if a point falls within an obstacle, it is labeled as real/true,
whereas if it does not fall within the spatial region of any obstacle
it is labeled as a noise/false point. For practical reasons, the walls
of the room where the dataset was collected were considered as
obstacles (real objects).
Distance to Object Label: Similarly, we compute the distance
between each point and its closest obstacle. In particular, points
falling within obstacles are assigned with a distance equal to zero.
Hence, real points have a distance value equal to zero, while noise
points will have increasingly higher distance values according to
how far they are from the closest obstacle.

The distance annotation is particularly relevant in mmWave
datasets since the boundary regions of objects pose several chal-
lenges. As shown in Figure 4, large clusters of noise tend to appear
on the border of the objects. Their proximity to real objects means
they are difficult to detect, possibly affecting navigation tasks. To
tackle this issue, the distance label can be used to shift the denoising
task from a binary classification problem into a regression one. This
allows the system to learn that noise points at the borders of objects
are not the same as noise points in the navigation routes. Our hope
is that the distance label can help the development of more robust
navigation systems capable of distinguishing negligible false points
at an object’s border from false points in an otherwise empty region
where the robot can move freely.

4.4 Dataset features
The MilliNoise dataset collects 49 individual runs captured in a
diverse set of 6 real-world scenarios totalling around 58k frames for
a duration of 8 hours of data collection. This enables to carry out
in-depth exploration of temporal dynamics in the point clouds and
its effect on noise points. Figure 4 shows an example run for each of
the six considered scenarios, depicting true points and noise points,
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as well as the path followed by the mobile robot. In total, around
12 million individually labeled 3D points have been collected, with
60.15% of noise points (7 million points) and the remaining part of
real points (5 million). Besides its (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) coordinates, each point
is equipped with velocity and intensity information, which paves
the way to analyses investigating the impact of these additional
variables on the noise points.

4.5 Dataset Organization
In the following, we provide more technical information on how
MilliNoise is organized and how to use it.

The dataset is organized in folders. Each folder contains data
related to a single run. In particular, each folder contains the raw
data and its post-elaborated version, which includes the labels and
the distance to the closest obstacle.

For each run, we provide the robot’s position and captured point
clouds in the form of a JSON file with the following pair <key,
value>:

• scene_ID: the ID of the scene of that particular run;
• timestamp: the timestamp at which the given frame has
been captured;

• data_pose: the list of robots’ coordinates (𝑥𝑅, 𝑦𝑅) in meters
and orientation 𝜃𝑅 in radians;

• data_mmwave: this field contains data coming from the sen-
sor. In particular, it contains the list of frames, in which each
point is described by its coordinates in meters, intensity and
radial velocity in m/s: 𝑥,𝑦, 𝑧, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦. The labeled
dataset extends this field with the labels and the distance in
meters from the closest obstacle (𝑥,𝑦, 𝑧, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑙, 𝑑).

Regarding the point cloud augmentation process described in Sec-
tion 4.2, it is worth noting that one can easily filter out added points.
In fact, points added through the augmentation process are assigned
with an intensity value equal to 255. Notice that such intensity value
is never obtained by real data points acquired by the sensor.

The data folder also contains a text file describing the structure
of the data and a file with information of each scene. The scenes’ file
contains the following information: the scene’s ID, the number of
obstacles, the ID of each obstacle and the related position and sizes.
A Jupyter notebook placed in the main folder provides examples
on how to load, process, and visualize the mmWave data. Figure 5
depicts the resulting directory structure of MilliNoise.

4.6 Dataset Tools
In order to further improve usability and help bootstrapping appli-
cations, we provide a few tools as examples on how to access and
use the MilliNoise dataset.

In particular, the MilliNoise.ipynb script provides several use-
ful functions, the main ones being:

• load_run: it takes as input the directory containing the run
one wants to load and returns the robot’s poses and the
mmWave frames in the form of list of lists;

• apply_rototranslation: it requires the mmWave frames
and the list of robot’s poses and returns a numpy array con-
taining the mmWave frames rototranslated to build a map;

• plot_scene: this function 3D-plots the (numpy array)mmWave
frames in input; optionally, it accepts the list of robot’s poses

Figure 5: The directory structure of the dataset.

to plot the trajectory, the list of points representing the ob-
stacles, the points’ sizes, the 𝑥 and 𝑦 limits to focus on a
particular region of interest and the destination directory
(and file name) to save the produced plot;

• plot_2d_scene: this function is analogous to plot_scene but
projects the plot on the 2D 𝑋𝑌 plane;

• load_train_test_data: this function reads the provided
path searching for mmWave data and returns the list of all
frames from all runs in the directory; it optionally accepts a
list to filter runs as train, test and validation data;

• get_data_and_label: it expects in input a list of mmWave
labeled frames and returns the numpy arrays of frames and
related points’ labels. This function allows one to directly
use data for training purposes.

5 CONCLUSIONS
In this work, we presented MilliNoise, a labeled dataset with point
clouds collected in indoor scenarios using a moving mmWave
FMCW radar mounted on a mobile robot. To the best of our knowl-
edge, MilliNoise is the first dataset collected with such an acquisi-
tion system in indoor scenarios. A distinctive feature of MilliNoise
is that it provides an accurate point-wise labeling of each of its 12M
points. In particular, label accuracy is only related to the accuracy of
the motion tracking system, which is below a tenth of a millimeter.
Furthermore, the sensor’s firmware has been modified to provide a
fixed number of points for each frame, enabling the employment
of methodologies which require a fixed number of points for each
frame. We believe that theMilliNoise dataset will prove valuable
for designing learning-based methods to denoise mmWave PCs
which will, in turn, make these devices more efficient and useful in
autonomous navigation systems and multimedia scenarios.
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