
To appear in IEEE TAC’s special issue onSystems and Control Methods for Communication Networks

Analysis and Design of Controllers for
AQM Routers Supporting TCP Flows∗

C.V. Hollot†, V. Misra‡, D. Towsley§ and W. B. Gong¶

March 2002

Abstract

Active Queue Management (AQM) is the process of signaling TCP sources from core routers with the objective
of managing queue utilization and delay. It is essentially a feedback control problem. Based on a recently developed
dynamic model of TCP’s congestion-avoidance mode, this paper does three things. First, it relates key network
parameters such as the number of TCP sessions, link capacity and round-trip time to the underlying feedback control
problem. Secondly, it analyzes the presentde factoAQM standard:random early detection(RED) and determines that
RED’s queue-averaging is not beneficial. Finally, it recommends alternative AQM schemes which amount to classical
proportional and proportional-integral control. We illustrate our results usingns simulations and demonstrate the
practical impact of proportional-integral control on managing queue utilization and delay.

∗This work is supported in part by the National Science Foundation under Grant ANI-9873328 and by DARPA under Contract DOD F30602-
00-0554.
†ECE Department, University of Massachusetts, Amherst, MA 01003;hollot@ecs.umass.edu
‡Computer Science Department, Columbia University, New York, NY 10027-7003;misra@cs.columbia.edu
§Computer Science Department, University of Massachusetts, Amherst, MA 01003;towsley@cs.umass.edu
¶ECE Department, University of Massachusetts, Amherst, MA 01003;gong@ecs.umass.edu

1 Introduction

The i am editing the development of new Active Queue Management (AQM) routers will play a key role in meeting
tomorrow’s increasing demand for performance in Internet applications. Such applications include voice over IP
(VoIP), class of service (CoS) and streaming video where packet size and session duration exhibit significant variations.
In this context this paper has three objectives. First, to relate key network parameters to the AQM problem. Secondly,
to analyze the presentde factoAQM standard:random early detection(RED) and finally, to recommend alternative
AQM schemes. The uniqueness of our approach comes from the use of a recently developed dynamic model of the
Tranmission Control Protocol (TCP) which enables application of control principles to address the basic feedback
nature of AQM.

To begin, we first consider a simple sender-receiver connection passing through a bottleneck router as shown
in Figure 1 and schematic of Figure 2. Under TCP, a sender probes the network’s available bandwidth by linearly

Sender

Bottleneck

Router

Receiver

Figure 1:A single sender-receiver connection.

increasing its rate until data packets are lost.1 Upon packet loss, the receiver signals the sender to reduce its rate.
Some drawbacks in this packet-dropping scheme include flow-synchronization and performance degradation due to
excessive time-outs and restarts. Motivated by these network inefficiencies, the RED scheme was introduced in [2]
to allow the router to assist TCP’s management of network performance. Rather than waiting for packet loss to
occur, RED acts preemptively by measuring the router’s queue length and throttling the sender’s rate accordingly.
Since TCP is an end-to-end protocol, RED achieves this feedback indirectly by randomly dropping/marking packets
and routing them to the receiver.2 The receiver, in turn, completes the feedback by acknowledging the receipt of

Sender

Congested Router

Receiver

data packets routed packets

lost
t

packets

Acknowledgements

Figure 2:A schematic of a sender-receiver connection.

1See [1] for a thorough but accessible treatment of TCP.
2AQM schemes communicate congestion to the sources using either packet dropping of marking. Here, we will assume marking using the

explicit congestion notification (ECN) mechanism; e.g., see [3].

1

marked packets to the sender; this is depicted in Figure 3 where we emphasize the implicit, delayed,3 feeding-back of
acknowledgment packets. Upon receipt of such acknowledgments, the sender increases or decreases its rate according
to the TCP algorithm. The randomness in RED’s packet-marking scheme is meant to eliminate flow-synchronization

Sender Receiver

Random Packet
Marking Queue

averaging RED

Round Trip Time (R)

Acknowledgements

Figure 3:RED randomly marks packets to anticipate congestion.

while queue-averaging was introduced to attenuate the effects of bursty traffic on the feedback signal. A drawback in
deploying RED stems from its apparent tuning difficulties4 (see [4] and [5]) and the research community has responded
with modifications such as in [6], [7], [8], [9], [10] and [11]. It has also motivated our research and this paper. Central
to our approach is the recognition that AQM schemes, such as RED, use feedback (evident in Figure 3) to regulate
queue efficiency. Consequently, feedback control principles appear to be an appropriate tool in the analysis and design
of AQM strategies. While such principles can be found in the analysis of ATM networks (see for example [12] - [14]
and the references cited therein) they have not been applied to TCP-controlled flows. This is apparently due to a lack
of analytical model of TCP’s congestion-avoidance mode. Recently, there has been progress in modeling of TCP; see
[15] and [16].

The launching point for this paper is a fluid-flow model of TCP behavior developed in [17]. This model expresses
TCP in a language that allows control engineers to analyze and design AQM schemes - that’s what we accomplish in
this paper. To be more specific, this model enables us to do several things. First, to relate key network parameters such
as TCP load, link capacity and round-trip time to the underlying feedback control problem. Secondly, to analyze RED
and recommend thataveragingis not beneficial,5 and finally, to suggest alternative AQM schemes which amount to
classical proportional (P) and proportional-integral (PI) control.6 The benefits of these schemes are illustrated through
ns simulations. One of the most promising outcomes of this work is the impact PI control has on queue utilization.
Specifically, in Section 6, we will provide a tradeoff curve between queue utilization and delay which shows the
trend of increased utilization with increased queuing delay. The key feature is that PI control allows one to explicitly
set the network queuing delay - independent of network parameters. In Sections 4-6 we will discuss RED, P and
PI in detail and providens simulations to validate our designs. In Section 3 we relate network parameters to the
AQM control problem, and in the next section we introduce the fluid-flow model developed in [17]. This paper is
an extended version of work appearing in [19] and [20]. The reader is also directed to the recent paper [21] which
provides additional control-theoretic perspective on congested TCP networks.

3This time delay is equivalent to one round-trip time which is comprised of propagation and queuing delays.
4By tuning we mean selecting the averaging and packet-marking parameters of RED for a given set of network conditions.
5On a constructive note, we will suggest RED parameters for stable queue management.
6We note that both P and PI controllers have been previously suggested in the literature; see [7] and [18] respectively. In this paper we show

how these schemes come from straightforward application of control engineering principles to the TCP model developed in [17].

2

Finally, we would like to point out that the while paper does not introduce new control theory nor new control
concepts, it does provide a positive example of how classical control can impact an important modern day problem.
It also shows the synergy between modeling and control and how appropriate modeling can shed light on seemingly
complex systems.

2 Dynamics of TCP’s congestion-avoidance flow-control mode

We begin our discussion of AQM by first introducing a dynamic model for TCP’s congestion-avoidance mode.

2.1 A fluid-flow model of TCP behavior

In [17], a dynamic model of TCP behavior was developed using fluid-flow and stochastic differential equation analysis.
Simulation results demonstrated that this model accurately captured the dynamics of TCP. In this paper we use a
simplified version of that model which ignores the TCP timeout mechanism. This model relates the average value of
key network variables and is described by the following coupled, nonlinear differential equations:

Ẇ (t) =
1

R(t)
− W (t)

2
W (t−R(t))
R(t−R(t))

p(t−R(t))

q̇ =

{ −C + N(t)
R(t) W (t), q > 0

max
{

0,−C + N(t)
R(t) W (t)

}
, q = 0.

(1)

whereẋ denotes the time-derivative and

W
.= average TCP window size (packets);

q
.= average queue length (packets);

R(t) .= round-trip time=
q(t)
C

+ Tp (secs);

C
.= link capacity (packets/sec);

Tp
.= propagation delay (secs);

N
.= load factor (number of TCP sessions);

p
.= probability of packet mark.

The first differential equation in (1) describes the TCP window control dynamic. Roughly speaking, the1/R term on
its right-hand side models the window’sadditive increase, while theW/2 term models the window’smultiplicative
decreasein response to packet markingp. The second equation in (1) models the bottleneck queue length as simply
an accumulated difference between packet arrival rateNW/R and link capacityC. The queue lengthq and window-
sizeW are positive, bounded quantities; i.e.,q ∈ [0, q̄] andW ∈ [0, W̄] whereq̄ andW̄ denote buffer capacity and
maximum window size respectively. Also, the marking probabilityp takes value only in[0, 1]. We illustrate these
differential equations in the block diagram of Figure 4 which highlights TCP window-control and queue dynamics.
We now approximate these dynamics by their small-signal linearization about an operating point to gain insight for
the purposes of feedback control (AQM).

2.2 Linearization

To linearize (1) we first assume that the number of TCP sessions and link capacity are constant; i.e.,N(t) ≡ N and
C(t) ≡ C. Taking(W, q) as the state andp as input, the operating point(W0, q0, p0) is then defined byẆ = 0 and
q̇ = 0 so that

Ẇ = 0 ⇒ W 2
0 p0 = 2

q̇ = 0 ⇒ W0 =
R0C

N
; R0 =

q0

C
+ Tp. (2)

3

∫
∫

⊗

⊗

W W q q

p

_

C

R
1

R
1

R
1Time

Delay
R

N

2
1

_

TCP window control

TCP load
factor

bottleneck queue

k
qu

1

Figure 4:Block-diagram of TCP’s congestion-avoidance mode.

Given the vector of network parametersη
.= (N, C, Tp), we define the set offeasible operating pointsΩη by

Ωη = {(W0, q0, p0) : W0 ∈ (0, W̄), q0 ∈ (0, q̄), p0 ∈ (0, 1) and (2) satisfied}.

In turn, we say that network parametersη arefeasibleif Ωη is non-empty.
To proceed with linearization of (1), we ignore the dependence of the time-delay termt − R on queue-lengthq,

and assume it fixed tot− R0. On the other hand, we retain the dependence of round-trip time on queue length in the
dynamic’s parameters. As a result, we have the simplified dynamics

Ẇ (t) =
1

q(t)
C + Tp

− W (t)
2

W (t−R0)
q(t−R0)

C + Tp

p(t−R0)

q̇ =

{ −C + N(t)
R(t) W (t), q > 0

max
{

0,−C + N(t)
R(t) W (t)

}
, q = 0.

. (3)

We linearize (3) about the operating point (see Appendix A for details) to obtain

˙δW (t) = − N

R2
0C

(δW (t) + δW (t−R0))− 1
R2

0C
(δq(t)− δq(t−R0))− R0C

2

2N2
δp(t−R0)

δ̇q(t) =
N

R0
δW (t)− 1

R0
δq(t) (4)

where

δW
.= W −W0;

δq
.= q − q0;

δp
.= p− p0

represent the perturbed variables about the operating point. A block-diagram representation of these linearized dynam-
ics is given in Figure 5 where the TCP window-control and queue dynamics are explicitly identified. A main reason
for modeling and linearization of window and queue dynamics is for the purpose of the design and analysis of AQM
schemes. To this end, we continue to simplify these dynamics by focusing on thenominal(low-frequency) behavior of

4

)1(0

2
0

sRe
CR

N −+

0R
N

0

1

1

Rs +s
1

0

2

2
0

2
sRe

N
CR −

-
-

δp

δW δq

TCP window dynamic

queue

e

dynamic

)1(
1

0

2
0

sRe
CR

−−

-

Figure 5:Block-diagram of the linearized TCP connection.

the window dynamic and accounting for the residual behavior into a high-frequencyparasitic. In Figure 6 we perform

block-diagram manipulation to isolate this nominal dynamic
R0C2

2N2

s+ 2N

R2
0C

e−sR0 as well as identifying the high-frequency

residual:

∆(s) .=
2N2s

R2
0C

3
(1− e−sR0). (5)

In the next sections we analyze different AQM schemes and primarily focus on nominal performance (performance
with respect to the nominal window dynamic) treating∆(s) as an unmodeled dynamic.

0R
N

-

δp

δW δq

queue dynamic

)(s∆

0

1

1

Rs +
CR

N
N
CR

s 2
0

2

2
0

2
2

+

nominal window

w

dynamic

0sRe−

Figure 6:Linearized dynamics illustrating the nominal window dynamic and high-frequency parasitic.

The modes of the window and queue dynamics are, respectively,e
− 2Nt

R2
0C = e−

2t
W0R0 ande−

t
R0 . An interpretation

of the window time constantW0R0
2 comes from expressing the linearization of theδẆ equation above as:

˙δW (t) = −λ0δW (t)− R0C
2

2N2
δp(t−R0)

whereλ0 is the equilibrium packet-marking rate as discussed in [17]. Therefore, the window-control time constant
can be equivalently expressed as1

λ0
. In equilibrium,Ẇ = 0 implies that themultiplicativedecrease in window size

5

1
2W0λ0 balances itsadditiveincrease 1

R0
. Consequently,λ0 = 2

W0R0
. Finally, it is interesting to note that linearization

of the queue dynamic does not yield a pure integrator, as one may expect and as one sees in the literature (for example,
[15]) but produces a leaky integrator with time constantR0. This can be partially explained by noting that the queue’s
arrival rateNW

R0
is a function of the round-trip time which, in turn, is a function of the queue length due to the queuing

delay q
C .

Remark 1: In [16] a nonlinear discrete-time model for the TCP window-control mechanism was developed which is
analogous to the window-size differential equation in (4). However, this AQM analysis was arrival-rate based and did
not contain a queue dynamic. Consequently, the resulting linearization is fundamentally different from that in (4).4

3 The AQM Control Problem

The objective of this section is to analyze the TCP dynamic described in (4) in terms of network parameters such
as TCP loadN , round-trip timeR0 and link capacityC, and in terms of the feedback nature of AQM. We will also
discuss performance objectives for AQM.

3.1 Plant dynamics

In Figure 7 we give a feedback control system depiction of AQM. The action of an AQM control law is to mark packets
(with probabilityp) as a function of measured queue lengthq. The plant dynamics, denoted by the transfer function

P(s)

AQM
control

l l

aw

_
δq

δp
0sRe−

)(s∆

Figure 7:AQM as feedback control.

P (s), then relates how this packet-marking probability dynamically affects the queue length. The transfer function
∆(s) represents high-frequency window dynamics; see (5). From Figure 6 we have

P (s) =
C2

2N

(s + 2N
R2

0C
)(s + 1

R0
)
. (6)

As a numerical illustration consider the case whenq0 = 175 packets,Tp = 0.2 seconds andC = 3750 packets/sec.7

Then, for a load ofN = 60 TCP sessions, we haveW0 = 15 packets;p0 = 0.008; R0 = 0.246;

P (s) =
1.17126× 105

(s + 0.53)(s + 4.1)
; ∆(s) = 2.24× 10−6s(1− e−0.246s).

7Corresponds to a 15 Mb/s link with average packet size 500 Bytes

6

For a load ofN = 120 TCP sessions, we haveW0 = 7.7; p0 = 0.034;

P (s) =
5.8320× 104

(s + 1.05)(s + 4.1)
; ∆(s) = 8.96× 10−6s(1− e−0.246s).

The magnitude Bode plots for these transfer functions are shown in Figure 8. The Bode plots ofP (jω) reveal the
low-pass nature of the TCP-queue dynamics as well as the inverse dependence of loop gain on the number of TCP
sessionsN . The frequency response of residual|∆(jω)| shows its influence at higher frequencies. One objective of
an AQM design is to gain stabilize these residual dynamics as discussed in the next sections.

Remarks 2:

1. The high-frequency plant gain ofP (s) in (6) is C2

2N while the low-frequency gain is(R0C)3

(2N)2 . The variation in
these gains as a function of TCP loadN and link capacityC is a concern in the design of AQM control schemes
since it has direct bearing on stability, transient response and steady-state performance. Indeed, either small
TCP loadsN or large link capacitiesC increase this gain, leading to decreased stability margins and increased
oscillatory response. Conversely, either larger TCP loads or smaller link capacities tend to dampen the AQM’s
responsiveness.

2. Stablizing an AQM control system in the face of the time-delayR0 places hard limits on the closed-loop control
bandwidth and, consequently, on the achievable speed of transient response. Indeed, for stable behavior, closed-
loop time constants are approximately bounded byR0/2 seconds.

4

10
2
 10
0
 10
2

20

40

60

80

100

|P
(j
ω

)|

(d
B

)

10
�
2
 10
0
 10
2

0

20

40

60

80

100

10
�
2
 10
0
 10
2

�
250

�
200

�
150

�
100

�
50

ω
 (rad/sec)

|
∆

(j
ω

)|
 d

B

10
�
2
 10
0
 10
2

�
200

�
150

�
100

�
50

ω
 (rad/sec)

N = 60
 N = 120

N = 60
 N = 120

Figure 8:Magnitude Bode plots forP (s) and∆(s) for TCP loads of 60 and 120 sessions.

3.2 AQM performance objectives

As in any control system design, a first step is to pose performance objectives. For AQM, performance objectives
include efficient queue utilization, regulated queuing delay and robustness.

7

1. efficient queue utilization:For efficient use, the queue should avoid overflow or emptiness. The former situation
results in lost packets and undesired retranmissions, while an empty buffer underutilizes the link. Both of these
extremes should be avoided in both transient and steady-state operation.

2. queuing delay:The time required for a data packet to be serviced by the routing queue is called the queuing
delay and is equal toqC . This time, together with the propagation delayTp, accounts for the network’s queuing
delay and it is desirable to keep small both the queuing delay and its variations. This calls for regulating to small
queue lengths; however, doing so may result in link underutilization and this limitation presents a fundamental
tradeoff to AQM design.

3. robustness:AQM schemes need to maintain closed-loop performance in spite of varying network conditions.
These conditions include variations in the number of TCP sessionsN , variations in the propagation delayTp.

3.3 Stabilizing AQM control laws

Consider the linear control system in Figure 9 where transfer functionC(s) represents a linear AQM control law.
Closed-loop stability is fundamental in meeting the above performance objectives. Our next result gives conditions

P(s)

C(s)

_

0sRe−

)(s∆

qδ

pδ

Figure 9:Block diagram of a linearized AQM control system

for stabilization which amount toC(s) stabilizing the delayednominal plant P (s)e−sR0 and gain-stabilizing the
hi-frequency window dynamic∆(s). One reason for gain-stabilizing∆(s) is that it allows us to focus on nominal
stabilization and helps make the design of AQM control laws transparent.8 In the following proposition we require the
transfer function

V (s) .=
P (s)

1 + P (s)C(s)e−sR0
.

Proposition 1: Given feasible network parametersη = (N, C, Tp) and operating point(W0, q0, p0) ∈ Ωη, the
linearized AQM control system, illustrated in Figure 9, is stable if:

(i) C(s) stabilizes the delayed nominal plantP (s)e−sR0 .

(ii) the hi-frequency parasitic∆(s) is gain-stabilized; i.e.,|∆(jω)V (jω)| < 1; ∀ω > 0.

Proof: If C(s) stabilizesP (s)e−sR0 , then V (s) is stable. Since∆(s)V (s) is stable, the small-gain condition
|∆(jω)V (jω)| < 1, together with the Nyquist stability criterion implies closed-loop stability. 2

8Subsequently, we consider only simple controllers such as proportional and PI control laws.

8

Remark 3: We can compute an upper bound to|∆(jω)V (jω)|. First, from (5),

|∆(j)| ≤ 4N2

R2
0C

3
ω.

Now, assume the sensitivity function satisfies
∣∣∣∣

1
1 + P (jω)C(jω)e−jωR0

∣∣∣∣ < M

for someM ≥ 1. Then, from (6), we have

|∆(jω)V (jω)| < |∆(jω)P (jω)|M

<

∣∣∣∣∣
2N

R2
0C

ω

(jω + 2N
R2

0C
)(jω + 1

R0
)

∣∣∣∣∣ M

<

∣∣∣∣∣
2N

R0C ω

jω + 2N
R2

0C

∣∣∣∣∣ M

≤ 2N

R0C
M =

2
W0

M.

WhenW0 > 2M , then |∆(jω)V (jω)| < 1 for all ω. This bounding is not sharp as subsequent examples show
products|∆(jω)V (jω)| that are smaller by at least two factors. 4

Another important consideration is the robustness of AQM controllers to uncertainty in the network parameters
(N, C, Tp). In the next proposition we show that stabilizing against the largest expectedR0 andC, and, against the
smallest expectedN leads to a robust AQM design.

Proposition 2: Given feasible network parametersη = (N, C, Tp) and operating point(W0, q0, p0) ∈ Ωη, assume
C(s) stabilizes the delayed nominal plant

P (s)e−sR0 =
C2

2N e−sR0

(s + 2N
R2

0C
)(s + 1

R0
)
.

Further, for feasible network parametersη̃ = (Ñ , C̃, T̃p) and operating point(W̃0, q̃0, p̃0) ∈ Ωη̃, suppose that

Ñ ≥ N ; C̃ ≤ C;
q̃0

C̃
+ T̃p ≤ R0.

If C(s) is stable,|C(jω)P (jω)| is monotonically non-increasing andC(0) > 0, thenC(s) stabilizes the perturbed
plant

P̃ (s)e−sR̃0 =
C̃2

2Ñ
e−sR̃0

(s + 2Ñ
R̃2

0C̃
)(s + 1

R̃0
)

(7)

whereR̃0
.= q̃0

C̃
+ T̃p.

Proof: For fixedω, |P (jω)| monotonically increases with1N , C andR0. Likewise, ∠P (jω) is a monotonically
decreasing function of1N , C andR0. Now, let (N, C, Tp) and(Ñ , C̃, T̃p) be given as in the proposition statement.
Then, it is straightforward to show that

|P̃ (jω)| ≤ |P (jω)|; ∠P̃ (jω) ≥ ∠P (jω).

9

Since stableC(s) stabilizesP (s), thenC(jω)P (jω) has a positive phase margin. By assumption,|C(jω)P (jω)| is
monotonically non-increasing andC(0) > 0. Thus,C(jω)P̃ (jω) must have a positive phase margin. 2

In the remainder of the paper we will design and compare some simple AQM control laws including proportional
and proportional-integral (PI) controllers. We begin our discussion by first analyzing thede factoAQM standard;
random early detection(RED).

4 AQM using RED

The simplest of congestion-avoidance scheme is the so-calleddrop-tail law which signals TCP sources to reduce
window sizes whenever the queue overflows. In the context of previous discussion this amounts to an “on-off” AQM
control law described by

p =
{

1, whenq > buffersize
0, otherwise

This on-off mechanism leads to queue-length oscillations, flow synchronization and performance degradation due to
excessive time-outs and restarts. Such oscillations are not surprising given the previous analysis which shows that
tail-drop amounts to the binary control of a plant,P (s) in (6), with pole-zero excess of two and with time delay. It is
known in control theory that such on-off mechanism leads to oscillations that can exhibit complex and even chaotic
behavior; e.g., see [23]. Chaotic behavior of TCP congestion control has been reported in [24]

Motivated by these network inefficiencies, the RED AQM scheme was introduced in [2] to allow the router to assist
TCP’s management of network performance; see Figure 3. Rather than waiting for packet loss to occur, RED acts
preemptively by taking anaveragemeasure of the router’s queue length and throttling the TCP window accordingly
by randomlymarking packets. This randomness in RED’s packet-marking scheme was meant to eliminate flow-
synchronization, while queue-averaging was introduced to attenuate the effects of bursty traffic due to restarts and
time-outs on the feedback signal. A drawback in deploying RED stems from its apparent tuning difficulties, see [4]
and [5]. As we now show, we believe this difficulty stems in large part to RED’s use of average queue length.9 Indeed,
given the plant dynamicsP (s) in (6), introduction of a low-pass filter into the feedback system in Figure 9 can lead to
sluggish, oscillatory closed-loop behavior.

4.1 Description of RED

The RED active queue management control law computes the packet-marking probabilityp as a function of measured
queue lengthq as depicted by the AQM control law in the block diagram of Figure 7. Specifically, RED consists of
a low-pass filter (for queue averaging) and packet-marking profile as shown in Figure 10.10 Tuning RED amounts to
selection of the low-pass filter poleK, thresholdqmin, levelpmax and gainLred.

Remark 4: The apparent motivation for introducing low-pass filtering in the AQM control law was to attenuate the
effect of bursty, non-TCP controlled traffic on packet-marking; see [2]. In Figure 4, such traffic enters at the input
to the bottleneck queue and is not directly controlled in TCP’s congestion-avoidance mode. While this rationale for
introducing low-pass filtering has some intuitive merit, it ignores the effect on closed-loop stability which amounts to
introducing additional phase lag into a loop already containing time delay and two low-pass filter dynamics (associated
with the TCP window and queue). 4

9The averaging of queue length in RED is different than the notion of averaged variablesW andq in the differential equations (1). The former
is an average over time, whileW andq in (1) are ensemble averages.

10The form of the low-pass filter was derived in [17]. The poleK is equal tologe(1 − α)/δ, whereα is the averaging weight andδ is the
sampling frequency. Normally RED updates it’s moving average on every packet arrival, and henceδ is 1/C, whereC is the link capacity in
packets/sec. At high load levels this sampling frequency exceedsC, whereas at low load levels it falls belowC. On an average however, under the
assumption of a stable congested queue, the sampling frequency isC.

10

Ks
K
+

averaging filterpacket-marking profile

qp

p

minth maxth

LRED

1
pmax

Figure 10:RED as a cascade of low-pass filter and nonlinear gain element.

4.2 Tuning RED

A transfer-function model for RED is

C(s) =
KLred

s + K
(8)

where, from Figure 10,

Lred =
pmax

maxth −minth
.

From (6) and (8), the nominal loop transfer functionL(s) .= C(s)P (s)e−sR0 is then

L(s) =
KLredC2

2N e−sR0

(s + 2N
R2

0C
)(s + 1

R0
)(s + K)

.

This loop transfer function has three poles and a time delay. To obtain gain from this loop (that is, to expect per-
formance in the closed loop) while achieving closed-loop stability, the low-pass filter poleK must either be placed
outside the loop’s bandwidth, or, taken less than the corner frequencies ofP (s). The first choice is tantamount to
using an instantaneous measure of the queue length.11 We will discuss this option in the next section. The second
situation, which preserves the original intent of RED, allows the averaging filter to dominate closed-loop behavior.
Consequently, the loop bandwidth will be small and the closed-loop time-constants long; but this is the price paid for
introducing additional phase lag of RED into the AQM loop.

Tuning a RED controller for stable operation follows from simple application of classical control techniques. Since
|L(jω)| monotonically decreases it has unique unity-gain crossover frequencyωg; i.e., |L(jωg)| = 1. The following
design rules amount to producing a positive phase margin, or equivalently, a crossover phase∠L(jωg) > −π. To
illustrate the design procedure, we first allow RED’s low-pass filter to dominate the loop by requiringωg to be less
than the corner frequencies of either the TCP or queue dynamic; that is,

ωg ¿ min
{

2N

R2
0C

,
1

R0

}
. (9)

Then,

|L(jωg)| ≈
∣∣∣∣∣

KLredC2

2N
2N

R3
0C

(jωg + K)

∣∣∣∣∣
and

∠L(jωg) ≈ −ωgR0 − atan
ωg

K
.

11In fact, this suggestion has been previously made in [7].

11

SinceL(s) is stable, nominal closed-loop stability is insured by selecting the triplet(ωg, Lred,K) to satisfy (9),
|L(jωg)| = 1 and∠L(jωg) > −π; that is,

∣∣∣∣∣∣

KLred(R0C)3

(2N)2

jωg + K

∣∣∣∣∣∣
= 1;

−ωgR0 − atan
ωg

K
+ π > 0. (10)

(9) and (10) provide guidelines for designing a stabilizing RED controller; i.e., a controller satisfying condition (i) of
Proposition 1. In addition to nominal stability, these guidelines guarantee stability for parametric variations inN , C
andR0 as pointed out in Proposition 2. Finally, to insure stability against the hi-frequency parasitic∆(s), condition
(ii) of Proposition 1 should be satisfied. We demonstrate this in the next example.

Example 1: Consider the network parameters considered in Section 3.1:C = 3750 packets/sec,N = 60 flows and
R0 = 0.246 seconds. From (9), take

ωg = 0.1min{0.53, 4.1} = 0.053 rad/sec.

To satisfy (10) we chooseK = 0.005 andLred = 1.86× 10−4 giving the RED controller

C(s) =
(5× 10−3)(1.86× 10−4)

s + 0.005
. (11)

In Figure 11 we give the Bode plot forL(s). The positive gain and phase margins indicate thatC(s) stabilizes the de-
layed nominal plant̃P (s)e−sR̃0 . In this same figure we plot∆(jω)V (jω) showing that condition (ii) of Proposition 1
is met and stability against the hi-frequency TCP parasitic is achieved. Finally, since|C(jω)P (jω)| is monotonically
decreasing, we can invoke Proposition 2 and conclude thatC(s) stabilizes the perturbed plant (7) for all feasible
network parameters satisfying̃N ≥ 60, C̃ < 3750 andR̃0 ≤ 0.246.

10
−2

10
−1

10
0

−40

−30

−20

−10

0

10

20

|L
(jω

)|
 (

dB
)

10
−2

10
−1

10
0

−180

−160

−140

−120

−100

−80

−60

ω (rad/sec)

∠
 (

L(
jω

))
 (

de
gr

ee
s)

(a) Frequency response ofL(s) showing positive gain and
phase margins.ωg ≈ 0.05 rad/sec.

10
−2

10
−1

10
0

10
1

10
2

−140

−120

−100

−80

−60

−40

−20

ω (rad/sec)

|∆
(jω

)W
(jω

)|
 (

dB
)

(b) |∆(jω)V (jω)| < 1 showing stability to the hi-frequency
TCP parasitic.

Figure 11: Frequency responses using RED controllerC(s) = (5×10−3)(1.86×10−4)
s+0.005 .

Remark 5: The phase constraint in (10) describes a fundamental tradeoff between control bandwidthωg (speed of
response) andK (level of queue averaging) for RED controllers. For a desired phase margin, an increase in queue

12

averaging (smallerK)requires a commensurate decrease inωg. (10) can also be used to identify stabilizing RED
parameters. For example, for a link capacity ofC = 15Mb/s and round-trip timeR0 = 0.246, Figure 12 identifies
stabilizing RED parameters(K, Lred) as a function of TCP loadN . As expected, the region of stabilizing RED
parameters grows with increasingN . 4

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1
x 10

−3

K (queue averaging decreases →)

L R
E

D

Link capacity = 15Mb/s
Round−trip time = 246ms

N = 40

N = 60

N = 80

N = 100

N = 120

Figure 12:Design curves for tuning RED. Stabilizing pairs(K, Lred) lie under the curves.

4.3 ns simulations with RED control

We illustrate our RED design (11) via simulations using thens simulator. Although the preceding analysis was carried
out using the linearized model (4), thens simulator captures the stochastic, nonlinear nature of the network dynamic.
We considered a single bottlenecked router running RED and, in addition to the TCP flows addressed in our model,
we also introduced short-lived http flows into the router to generate a realistic traffic scenario. The http flows were
simulated using the http module provided withns . The effect of these short-lived flows was to introduce an exogenous,
noisy flow into the queue. In all of our plots the horizontal axis measures time (secs) while the vertical axis displays
instantaneous queue lengthq (packets).

In the first simulation, we introduced 60 TCP flows and 180 http sessions. The capacityC is 15 Mb/s and the
propagation delayTp ranges uniformly between 160 and 240 ms. To provide a queuing delay of around 50-70 ms we
setminth andmaxth of the packet-marking profile in Figure 10 to 200 and 250 respectively. The average packet size
was set to 500 bytes. RED’s averaging weightα andpmax were taken to be “vanilla;” i.e., the default values inns .
The buffer capacity was 800 packets. We set thegentle parameter in RED to “on”. The result is shown in Figure 13
which shows the oscillating nature of the queue length. The link is underutilized whenever the queue length goes to
zero. Also, the large queue oscillation results in considerable variation in the round-trip times of packets.

Now we use the RED design in (11) and take the averaging weightα to be1.33 × 10−6, pmax to 0.1 and the
dynamic range (minth,maxth) as (150,700) packets. The results are plotted in Figure 13. We see that the system
response is stable, with fluctuations about an operating level of the queue. The larger oscillations experienced in the
previous experiment are absent in this RED design. The slow response time is related to a low value ofωg in our
design.12 To improve the transient response, we can design for larger bandwidthωg; however this would come at the
expense of lower stability margins.

12This slow response time is also due to the nonlinear effects of the tail-drop phenomena occuring when the queue size reaches 800 packets and
overflows.

13

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

Time

Q
ue

ue
 S

iz
e

P
ac

ke
ts

/s
ec

Default RED paramaters

(a) RED parameters chosen as defaultns values.

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

Time

Q
ue

ue
 S

iz
e

P
ac

ke
ts

/s
ec

(b) RED parameters chosen to satisfy (9) and (10).

Figure 13:ns simulations comparing performance of RED controllers.

5 AQM using Proportional Control

The preceding RED controller resulted in small closed-loop bandwidths and thus sluggish behavior. One way to
improve the response time of the system is to remove the low-pass filter completely.13 In doing so we arrive at a
classical proportional controller.14 In proportional control the feedback is simply a scaling of the queue length and,
in context of RED, this amounts to obtaining the packet-marking probability based on the instantaneous queue length
rather than averaged queue length.

5.1 The proportional controller

As in the case of RED, the design of a proportional controller

C(s) = KP (12)

follows from standard frequency-domain techniques. The nominal loop transfer function in the proportional case is

L(s) =
KP C2

2N e−sR0

(s + 2N
R2

0C
)(s + 1

R0
)
.

Again, there exists a tradeoff between loop bandwidth and stability. However, the tradeoff is more favorable in the
proportional case.15 For example, one can take the loop’s unity-gain crossover frequency to be the geometric mean of
corner frequencies

ωg =

√
2N

R0
3C

(13)

and chooseKP to make|L(jωg)| = 1. Under the likely case whenW0 > 2; i.e., when 2N
R2

0C
< 1

R0
, this choice leads

to positive phase margins. Indeed, since∠P (jωg) > −90◦ andωgR0 < 1, then

∠L(jωg) = ∠P (jωg)− ωgR0 ≥ −90◦ − 180◦

π
≈ −147◦.

13This is equivalent to takingK = ∞ in (8).
14Proportional control has also been suggested in [7].
15This improved tradeoff is obvious from Figure 12 where the proportional controller corresponds to selecting the RED “queue averaging”

parameter to beK →∞.

14

Hence, we have nominal stability and parametric robustness as outlined in Proposition 2. Let’s illustrate with an
example.

Example 2: Consider the same setup studied in Example 1 whereC = 3750 packets/sec,N = 60 flows andR0 =
0.246 seconds. From (13),ωg ≈ 1.5 rad/sec and from|L(jωg)| = 1 we obtain

KP =

∣∣∣∣∣∣

(
jωg + 2N

R2
0C

)(
jωg + 1

R0

)

C2

2N

∣∣∣∣∣∣

=

∣∣∣∣∣
(j1.5 + 0.53)(j1.5 + 4.1)

(3750)2

120

∣∣∣∣∣ = 5.8624× 10−5.

The proportional controller is thenC(s) = 5.8624 × 10−5. In Figure 14(a) we give the Bode plot forL(s) showing
positive gain and phase margins. The bandwidthωg = 1.5 rad/sec is almost 30 times that of the RED design in
Figure 11. The hi-frequency parasitic is gain-stabilized as shown in Figure 14(b).

10
−2

10
−1

10
0

10
1

10
2

−80

−60

−40

−20

0

20

|L
(jω

)|
 (

dB
)

10
−2

10
−1

10
0

10
1

10
2

−400

−300

−200

−100

0

ω (rad/sec)

∠
(L

(jω
)

(d
eg

re
es

)

(a) Frequency response ofL(s) showing positive margins.
ωg ≈ 1.5 rad/sec.

10
−2

10
−1

10
0

10
1

10
2

−140

−120

−100

−80

−60

−40

−20

ω (rad/sec)

|∆
(jω

)W
(jω

)|
 (

dB
)

(b) The proportional controller gain-stabilizes the hi-
frequency TCP parasitic.

Figure 14: Frequency responses for proportional controllerC(s) = 5.8624× 10−5.

5.2 ns simulations with proportional control

In this simulations, we consider a queue with 60 TCP flows and 180 http sessions. The link bandwidth is 15 Mb/s,
and the propagation delays for the flows range uniformly between 160 and 240 ms, with average packet size being
500 Bytes. The buffer size is 800 packets. We also introduce a time-varying TCP loadN(t) to compare the speed of
response between the RED and proportional controllers. At timet = 100, 20 of the TCP flows drop out and at time
t = 140 they return. For the proportional controller, we set the averaging weightα = 1 thereby removing the low-pass
filter. We set the slope of the packet-marking profile to be the gainKP calculated above, varying the loss linearly
from 0 at queue length 100 with the slope specified by gain. Note that the buffer size of 800 puts an upper limit on the
marking probability, which is(800 − 100)KP , which is approximately 0.04. We’ll return to this issue following the
experiment. For the RED controller we use the parameters derived in Example 1. The queue length plots are shown in
Figure 15(a). As evident from the traces, the proportional controller performs better, responding more quickly to load
variations. However, this was to be expected since the closed-loop bandwidth for the proportional design exceeded
that of the RED design by almost a factor of thirty.

15

While the proportional controller exhibits more responsive behavior than RED, it also suffers from a limitation
which makes it impractical to implement under certain situations. For example, the steady-state buffer length is
commensurate to the proportional controller’s gain. Hence, buffer-size limitations could require gains outside the
region of stabilizing proportional gains; such observations are also made in [11]. To illustrate, we repeat the previous
experiment but changepmax from 0.04 to 1 for the proportional controller, to reflect a desire to keep the steady-state
buffer length small. The result in Figure 15(b) shows significant oscillations.

Increasing the buffer size to work around this problem is not an option since this could lead to unacceptably
large queuing delays. The problem arises due to the coupling between queue length and marking probability. The
two can be decoupled if we use integral control [22] in the AQM controllerC(s). Both the proportional and RED
controllers result in control systems having (network-dependent) steady-state errors.For stable closed-loop systems,
integral control drives the steady-state error to zero. Thus, we can design an integral controller for AQM which
regulates the queue to a given operating level, independent of the loadN . The simplest integral controller is the
proportional-integral (PI) controller which appears appropriate for AQM context since, in comparison to RED, yields
larger closed-loop bandwidths without sacrificing stability margins.16

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

Time

Q
ue

ue
 S

iz
e

(p
ac

ke
ts

)

RED
Proportional Controller

(a) Proportional control compares favorably with RED. TCP
flows change at 100 and 140 seconds.

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

Time

Q
ue

ue
 S

iz
e

(p
ac

ke
ts

)

(b) Limitation of proportional control.

Figure 15:ns simulations of proportional control.

6 AQM using Proportional-Integral Control

A PI controller has a transfer function of the form

C(s) = KPI

(s
z + 1)

s
.

A desired consequence of the integral term is thatδq in Figure 9 asymptotically converges to zero ifC(s) stabilizes.
In Figure 16 we show implementation of the PI control law with the nonlinear TCP/AQM dynamic (1) emphasizing
the role of the queue’s operating pointq0. The open-loop transfer function using PI control is

L(s) =
KP IC2

2N (s
z + 1)e−sR0

s(s + 2N
R2

0C
)(s + 1

R0
)
.

16Therandom early marking(REM) scheme introduced in [18] also employs a PI control element.

16

TCP/AQM
 dynamic

c

(1)

PI

_
q

δqp δp

p0

q0

_

Figure 16:Implementation of the PI controller emphasizing the role of operating pointq0.

Design of the PI controller is straightforward. First, we choose the PI’s zeroz to coincide with the corner frequency
of the TCP window dynamic; i.e.,

z =
2N

R2
0C

. (14)

Then, we take the loop’s unity gain crossover frequency as

ωg =
β

R0
(15)

whereβ is next chosen to set the phase margin. To meet the crossover condition|L(jωg)| = 1 we insist that

KPI = ωgz

∣∣∣∣∣
jωg + 1

R0

C2

2N

∣∣∣∣∣ (16)

and then calculate the loop phase:

∠L(jωg) = ∠ e−jωgR0

jωg(jωg + 1
R0

)

= −90◦ − 180
π

ωgR0 − arctan(ωgR0)

= −90◦ − 180
π

β − arctanβ.

A plot of ∠L(jωg) versusβ in Figure 17 shows that values ofβ ∈ (0, 0.85) yield positive phase margins, with margins
increasing for decreasingβ. For example,β = 0.5 gives a phase margin of about30◦. For pairs(z, KPI) designed
according to (14) – (16), the PI compensator

C(s) = KPI

s
ωg

+ 1

s

stabilizes the nominal delayed plant (see Proposition 1) and enjoys the robust stabilization described in Proposition 2.

Remark 6: Similar to the analysis of the RED controller in Remark 5 and Figure 12, we can identify PI parameters
(β,KPI), as a function of TCP load, that satisfy the above design rules. We do this in Figure 18 for a link capacity of
C = 15Mb/s and round-trip timeR0 = 0.246 seconds. As expected, the region of stabilizing PI parameters shrinks
with smaller TCP loadsN .

Example 3: Consider the same setup as in Examples 1 and 2 whereC = 3750 packets/sec,N = 60 flows and
R0 = 0.246 seconds. We set the unity gain crossover toωg = z = 0.53 rad/sec, about ten times that of the RED

17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

−180

−160

−140

−120

−100

−80

β

∠
 L

(jω
g)

Figure 17:Loop phase angle\L(jωg) as a function of design parameterβ. Positive phase margins occur forβ ∈ (0, 0.85)

controller in Example 1. From (15),β = (0.53)(0.246) ≈ 0.13 which, from Figure 17, sets the phase margin to about
80◦. From (14) – (16),ωg = 0.53 rad/sec and

KPI = (0.53)2
∣∣∣∣∣
(j0.53 + 4.1)

(3750)2

120

∣∣∣∣∣ = 9.6426× 10−6.

Thus,

C(s) = 9.6426× 10−6 (s
0.53 + 1)

s
.

In Figure 19 we give the resulting frequency responses ofL(jω) and∆(jω)V (jω). Compared with the RED design
in Example 1, the PI design has increased bandwidth from0.05 to 0.5 rad/sec. This larger bandwidth results in
more responsive AQM as we show in the following simulations. Also, the integral action of PI is evident in the
low-frequency gain ofL(jω). Finally, we plot stability boundaries for variations in network parameters(N, R, C)
in Figure 20. Parameters below the curves correspond to closed-loop stability while parameters above correspond to
unstable networks. Stability margins decrease with increased link capacity, increased round-trip time, or decreased
number of TCP flows – consistent with the robustness properties described in Proposition 2.

Remark 7: As with any application of integral control, one should be aware of integrator windup due to control
signal saturation; e.g., see [22]. This is certainly a possibility in AQM where the control signal (the packet-marking
probability) takes value in[0, 1]. We have not implemented antiwindup schemes in the followingns simulations.4

6.1 ns simulations with PI control

To validate the performance of the PI controller, we implemented it inns with a sampling frequency of 160 Hz.
The operating point was chosen asq0 = 200 packets. We repeat the simulation shown in Figure 15(a), using the PI
controller in lieu of proportional. The queue length plots for the RED and PI controllers are plotted in Figure 21(a).
The faster response time as well as the regulation of the output to a constant value by the PI controller is clearly
observed. The PI controller is less sensitive to the load level variations and regulates the queue length to the operating
point of 200 packets.

18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

2

3

4

5

6

7

8

9

10
x 10

−5

β

K
P

I

N=60

N=80

N=100

N=120

Link capacity = 15Mb/s
Round−trip time = 246ms

Figure 18:PI parameters(β, KPI) satisfying (14) – (16) lie below the curves.

10
−2

10
−1

10
0

10
1

10
2

−80

−60

−40

−20

0

20

40

|L
(jω

)|
 (

dB
)

10
−2

10
−1

10
0

10
1

10
2

−500

−400

−300

−200

−100

0

ω (rad/sec)

∠
 L

(jω
)

(d
eg

re
es

)

(a) Frequency response ofL(s) showing positive gain and
phase margins. Notice the increased low-frequency gain and
bandwidth ofωg ≈ 0.5 rad/sec.

10
−2

10
−1

10
0

10
1

10
2

−160

−140

−120

−100

−80

−60

−40

−20

ω (rad/sec)

|∆
(jω

)
W

(jω
)|

 (
dB

)

(b) |∆(jω)V (jω)| < 1 showing stability in face of the hi-
frequency TCP parasitic.

Figure 19: Frequency responses using PI controllerC(s) = 9.64× 10−6 (s
0.53+1)

s .

19

1000 2000 3000 4000 5000 6000 7000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

C, link capacity (packets/sec)

R
, r

ou
nd

−
tr

ip
 ti

m
e

de
la

y
(s

ec
s)

N = 10

N = 20

N = 40

N = 60

N = 80

Figure 20:Stability boundaries for a single-link network under PI AQM. Parameters below curves correspond to stable networks.

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

Time

Q
ue

ue
 S

iz
e

(p
ac

ke
ts

)

PI
RED

(a) PI control regulates to a queue length of 200 packets, in-
dependent of TCP flow level.

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

Time

Q
ue

ue
 S

iz
e

(p
ac

ke
ts

)

PI
RED

(b) Increasing the TCP flow levelN results in lower-
bandwidth and slower response time. Unlike RED, the PI con-
troller maintains the steady-state queue length to 200 packets.

Figure 21: Comparison of RED and PI control under time-varying and heavy TCP loads.

20

We now increase the number of TCP flows to 180 and http flows to 360. From Remark 2.1, the response should
be slower for this higher load levelN . The queue lengths are plotted in Figure 21(b) and we observe significantly
better performance from the PI controller. The RED controller takes a long time to settle down, with the steady-state
queue length quite large compared to the preceding simulation. The PI controller on the other hand is still regulating
the queue length to 200 packets. The PI controller regulates toq0 independent of TCP load.

In the next simulation we exercise the controllers at the other end of the load spectrum by reducing the TCP
flows to 16 sessions. As observed in Figure 22(a), the responses are more oscillatory corresponding to reduced phase
margins. Finally, we stretch the controllers to the limit by increasing the number of TCP flows to 400. In Figure 22(b)

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

Time

Q
ue

ue
 S

iz
e

(p
ac

ke
ts

)

PI
RED

(a) Light TCP load.

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

Time

Q
ue

ue
 S

iz
e

(p
ac

ke
ts

)

PI
RED

(b) Under heavy TCP load, RED loses control and buffer is in
overflow state. PI continues to regulate.

Figure 22: Comparison of RED and PI control under a light and very TCP loads.

the PI controller continues to exhibit acceptable performance, although its response has slowed. The RED controller,
on the other hand, keeps the buffer in overflow . At such high load levels, the loop gain has decreased to a point where
(large) regulating errors have pushed the steady-state queue length beyond the buffer size. This simulation illustrates
the benefit of integral control in an AQM system with a finite buffer.

6.2 Tradeoff between queuing delay and utilization

An important consideration in designing AQM systems is the tradeoff between queuing delay and utilization. Intu-
itively, larger buffers lead to higher utilizations of the link, but they also result in larger queuing delays. With the PI
controller, the delay is essentially tunable with a single parameterq0. Larger values ofq0 give larger delay and utiliza-
tion. In contrast, with RED, the delay is a function network conditions such as load level and packet-marking profile
parametersminth, maxth andpmax. We performed simulations to study this tradeoff as illustrated in Figures 23 –
25 where both pure ftp and mixed ftp and http flows are considered. As we observe in Figures 23(a), smallq0 yields
nearly full utilization in the case of pure ftp flows, whereas a largerq0 is needed to reach this same level of utilization
when both ftp and http are considered. The corresponding queuing delays are shown in Figure 23(b) indicating a
nearly linear relationship withq0. The corresponding delay-utilization curves are shown in Figure 24. We repeated
these experiments with RED attempting to control delay through parameterminth. We kept the rangemaxth−minth

constant throughout. We ran the first experiment using a dynamic range of 550 (this corresponds to our RED design in
(11)) and then repeated with a range of 55. We compare the performance with the PI design in Figure 25 where both
long and short-lived flows were used. In the first of these figures, RED yields high utilization at the expense of large
delays. When we reduced the queuing delay by lowering RED’s dynamic range, utilization suffered. The PI design
was capable of operating at both low delay and high utilization.

21

0 10 20 30 40 50 60 70 80 90 100
0.85

0.9

0.95

1

q
0

U
til

iz
at

io
n

60 ftp flows
60ftp + 500 http flows

(a) Utilization versus operating pointq0.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

q
0

de
la

y

60 ftp flows
60ftp + 500 http flows

(b) Queuing delay versus operating pointq0.

Figure 23: Utilization and queuing delay of the PI controller

0 5 10 15 20 25 30
0.85

0.9

0.95

1

delay (ms)

U
til

iz
at

io
n 60 ftp flows

60ftp + 500 http flows

Figure 24: Utilization versus queuing delay: PI controller.

0 10 20 30 40 50 60 70 80
0.85

0.9

0.95

1

delay (ms)

U
til

iz
at

io
n

Dynamic range 550

PI
RED

(a) RED’s dynamic range is 550.

0 5 10 15 20 25 30
0.85

0.9

0.95

1

delay (ms)

U
til

iz
at

io
n

Dynamic range 55

PI
RED

(b) RED’s dynamic range is 55.

Figure 25: Queuing delay - utilization tradeoff: comparison between RED and PI control.

22

7 Conclusion

In this paper we analyzed a combined TCP and AQM model from a control engineering standpoint. We used lin-
earization to analyze a previously developed nonlinear model of TCP. We performed the analysis on an AQM system
implementing RED and presented design guidelines for choosing parameters which lead to local stability. We per-
formed nonlinear simulations usingns which verified our analysis. In doing the analysis, we uncovered limitations
of the averaging algorithm in RED. In addition we have proposed and designed two alternative controllers. The re-
sulting control systems had faster response than the RED controller. The first of the designs, a proportional controller,
displayed good transient response but suffered steady-state errors in queue regulation. This restricts its usefulness in
systems where the buffer size is limited. Motivated by that limitation, we designed a classical PI controller which ex-
hibited zero steady-state regulation error and acceptable transient behavior. The PI controller was simple to implement
in ns which we compared under various scenarios with RED. The PI controller exhibited better performance under
all cases considered. We also demonstrated the practical impact of the PI controller in managing queue utilization
and delay. In this paper, we have concentrated on simple and classical designs for AQM control. Modern control
methodologies could be used; however, going this route may have obfuscated one of our main objectives which is to
relate AQM control objectives directly to network parameters. Finally, there are a number of different areas in which
the techniques presented here could be extended. Examples include networks with heterogeneous round-trip times,
multiple congested routers and uncertain routing topologies.

8 Acknowledgment

We would like to thank Professor Yossi Chait of the Mechanical and Industrial Engineering Department at the Univer-
sity of Massachusetts Amherst for many fruitful discussions. We also acknowledge the anonymous reviewers whose
constructive comments improved the paper.

23

A Linearization of the Fluid-Flow Model

In this appendix we linearize the differential equations in (3). We first define their right-hand by:

f(W,WR, q, qR, pR) .=
1

q
C + Tp

− WWR

2(qR

C + Tp)
pR

g(W, q) .=
N

q
C + Tp

W − C. (17)

whereWR(t) .= W (t−R0), qR(t) .= q(t−R0) andpR(t) .= p(t−R0). Recall the operating point relationships:

Ẇ = 0 ⇒ W 2
0 p0 = 2

q̇ = 0 ⇒ W0 =
R0C

N
; R0 =

q0

C
+ Tp.

Evaluating the partials off andg at this operating point(W0, q0, p0) in gives:

∂f

∂W
= −2W0

R0
p0

= − W0

2R0

2
W 2

0

= − 1
R0W0

= − N

R2
0C

;

∂f

∂WR
=

∂f

∂W
;

∂f

∂q
=

∂

∂q

(
1

q
C + Tp

− WWR

2(qR

C + Tp)
pR

)

= − 1
R2

0C
;

∂f

∂qR
=

∂

∂q

(
1

q
C + Tp

− WWR

2(qR

C + Tp)
pR

)

=
W 2

0 p0

2R2
0C

=
1

R2
0C

;

∂f

∂pR
= −W 2

0

2R0

= −
R2

0C2

N2

2R0

= −R0C
2

2N2
;

24

∂g

∂q
=

∂

∂q

NW

(q
C + Tp)

= − NW0

C(q0
C + Tp)2

= − 1
R0

;

∂g

∂W
=

N

R0
.

25

References

[1] D.E. Comer,Internetworking with TCP/IP, Principles, Protocols and Architectures, Vol. 1, 4th Edition, Prentice
Hall, 2000.

[2] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion Avoidance,”IEEE/ACM Transac-
tions on Networking, Vol. 1, August 1997.

[3] K.K. Ramakrishnan, S. Floyd. “A Proposal to Add Explicit Congestion Notification (ECN) to IP,” RFC 2481,
Jan. 1999.

[4] M. Christiansen, K. Jeffay, D. Ott, and F. Smith, “Tuning Red for Web Traffic,”Proceedings of ACM/SIGCOMM,
2000.

[5] M. May, T. Bonald, and J.-C. Bolot, “Analytic Evaluation of RED Performance,”Proceedings of IEEE INFO-
COM, 2000.

[6] D. Lin and R. Morris, “Dynamics of Random Early Eetection,”Proceedings of ACM/SIGCOMM, 1997.

[7] M. May, C. Diot, B. Lyles, and J. Bolot, “Influence of Active Queue Management Parameters on Aggregate
Traffic Performance,” available at ftp://ftp.sprintlabs.com/diot/aqm.zip.

[8] T. J. Ott, T. V. Lakshman, and L. H. Wong, “SRED: Stabilized RED,”Proceedings of IEEE INFOCOM, 1999.

[9] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Blue: A New Class of Active Queue Management Algorithms,”
tech. rep., UM CSE-TR-387-99, 1999.

[10] W. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “A Self-Configuring RED Gateway,”Proceedings of IEEE
INFOCOM, 1999.

[11] V. Firoiu and M. Borden, “A Study of Active Queue Management for Congestion Control,”Proceedings of IEEE
INFOCOM, 2000.

[12] Y. Zhao, S.Q. Li and S. Sigarto, “A Linear Dynamic Model for Design of Stable Explicit-Rate ABR Control
Schemes,”Proceedings of IEEE INFOCOM, 1997.

[13] B. Ataslar, P. Quet, A. Iftar, H. Ozbay, T. Kang and S. Kalyanaraman, “Robust Rate-Based Flow Control for High-
Speed Networks: The Case of Uncertain Time-Varying Multiple Time Delays,”Proceedings of the American
Control Conference, Chicago, pp. 2804-2808, 2000.

[14] E. Altman T. Basar and R. Srikant, “Robust Rate Control for ABR Sources,”Proceedings of IEEE INFOCOM,
1998.

[15] S. Mascolo, “Congestion Control in High-Speed Communication Networks,”Automatica, Vol. 35, no. 12,
pp. 1921–1935, 1999.

[16] F. Kelly, “Mathematical Modeling of the Internet,”Mathematics Unlimited - 2001 and Beyond, 2000.

[17] V. Misra, W. B. Gong, and D. Towsley, “Fluid-based Analysis of a Network of AQM Routers Supporting TCP
Flows with an Application to RED,”Proceedings of ACM/SIGCOMM, 2000.

[18] S. Athuraliya, V. H. Li, S. H. Low and Q. Yin “REM: Active Queue Management,”IEEE Network, Vol. 15,
pp. 48-53, 2001.

[19] C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong, “A Control Theoretic Analysis of RED.”Proceedings of
IEEE INFOCOM, 2001.

26

[20] C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong, “On Designing Improved Controllers for AQM Routers
Supporting TCP Flows.”Proceedings of IEEE INFOCOM, 2001.

[21] S. H. Low, F. Paganini, and J.C. Doyle, “Internet Congestion Control,”IEEE Control Systems Magazine, Vol. 22,
no. 1, pp. 28-43, 2002.

[22] G. F. Franklin, J. D. Powell, and A. Emami-Naeini,Feedback Control of Dynamic Systems. Addison-Wesley,
1995.

[23] K. J.Åström, “Oscillations in Systems with Relay Feedback,” inAdaptive control, filtering and signal processing,
IMA Volume sin Mathematics and its Applications, Vol. 74, pp. 1–25, 1995.

[24] A. Veras and M. Boda, “The Chaotic Nature of TCP Congestion Control,”Proceedings of IEEE INFOCOM,
2000.

27

