Streaming over Edge/UMTS commercial cards
using TCP and TFRC: an experimental
evaluation*

Luca De Cicco, Saverio Mascolo

DEE Politecnico di Bari,
Via Orabona 4, 70125 Bari, Italy

Abstract Streaming videos over mobile phones is an emerging appli-
cation. The TCP Friendly rate control is currently discussed within the
IETF as a possible leading standard for streaming time-sensitive data
such as audio and video over the Internet. The main feature of TFRC is
the rate control that is aimed at smoothing the burstiness of TCP due to
its window control. In this paper we evaluate TCP versus TFRC using a
commercial Edge/UMTS card connected to the public Internet. We eval-
uate and compare inter-protocol friendliness, smoothness and googdput
of TCP versus TFRC. To the purpose a library has been developed on
top of the Web100 tools which enables, through the use of a simple API,
to log TCP variables in any application which generates TCP flows. Main
finding of this investigation is that both TCP and TFRC are not able
to use downlink bandwidth in the presence of reverse traffic, which is
an important working condition such as in the case of peer-to-peer VolP
applications.

1 Introduction

Audiovisual streaming is an emerging application in the odiern Internet. Ap-
plications that generate multimedia flows often do not use congestion control
schemes to adapt their rate in order to avoid congestion collapse and assure
internet stability. Several congestion control protocols have been proposed in
order to transport multimedia flows. A new trasport protocol has to satisfy the
following requirements: i) the rate of generated flows should be smooth, i.e. rates
should exhibit contained oscillations in order to keep the receiver buffer as small
as possible; ii) it has to be TCP friendly i.e. competing TCP flows should gain
the same long term throughput; iii) it has to be fair i.e. flows using the same
congestion control should gain the same long term throughput; iv) it has to be
responsive i.e. flows should quickly react to network conditions changes.

TFRC [1] is currently been discussed within IETF as a possible leading stan-
dard for streaming multimedia flows.

In this paper evaluate TFRC performances versus TCP by accessing the
public Internet using a commercial UMTS card.

* The work has been supported by Financial Tradeware Srl, Roma, Italy

The paper is organized as follows:

In section 2 we will briefly describe TCP Reno congestion control and TFRC
basics. Section 3 describes the tools we developed for experimental analysis . In
section 4 we describe the testbed used in our experiments and we report results
obtained by live internet measurement using a commercial UMTS card provided
by a telecom operator. Final section reports conclusions and open issues.

2 Related Work

The version of the TCP (TCP NewReno) congestion control algorithm which
currently implemented in TCP/IP stacks is largely based on [2] and on its mod-
ifications. TCP congestion control is made of two main different phases: the
probing phase and the decreasing phase. In the probing phase the channel is
probed by exponentially increasing the congestion window (slow start phase)
untill the slow start threshold is hit. At this point the congestion window is
linearly increased (Additive Increase or congestion avoidance phase).

The decreasing phase, also called Multiplicative Decrease, is instead triggered
when a congestion episode is experienced. TCP assumes that a congestion takes
place when three duplicate acknowledgment packets (3DUPAK) are received
by the sender or a timeout expires. When such an event occurs the congestion
window is halved in order to quickly react to the congestion episode.

The pseudo code of TCP is the following;:

1. On ACK reception:
— cwnd is increased according to the Reno alogrithm
2. When 3 DUPACKSs are received:

— ssthresh = max(2,cwnd/2);
— cwnd = ssthresh;

3. When coarse timeout expires:

— ssthresh = 1;
— cwnd = 1;

One of the main drawbacks of classic TCP congestion control is experienced
when accessing lossy links such as 802.11b/g and 2G/3G netwok. In fact TCP
triggers the Multiplicative Decrease even if the loss is due to interference on the
wireless channel and not to congestion.

The TCP Friendly Rate Control (TFRC) is a rate based congestion con-
trol algorithm which has been recently proposed within IETF as the standard
transport protocol for multimedia flows. TFRC aims at obtaining a smooth rate
dynamics along with ensuring friendliness towards Reno TCP [4]. To provide
friendliness, a TFRC sender emulates the long term behavior of a Reno con-
nection using the equation model of the Reno throughput developed in [3]. In
this way, the TFRC sender computes the transmission rate as a function of the
average loss rate, which is sent by the receiver to the sender as feedback report.

3 Issues in measuring TCP flows performances

When conducting and collecting live internet experiments one of the most diffi-
cult task is to log TCP variables such as congestion window, slow start threshold,
round trip time and so on. Since TCP is implemented in the kernel of the op-
erating system those variables are kept hidden to user space application making
their logging an impossible task. In order to work around this issue researchers
have proposed several solutions: instrumenting the kernel code, developing TCP
user space implementation [6] and using packet sniffers along with tcptrace
application [7]. Each of these solutions are not well suited because it is difficult
to validate instrumented implementations and it is even more difficult to verify
a user space TCP implementation.

In [5] authors describe a new and less intrusive solution which consists of a
kernel patch and a library (1ibweb100) which exposes to the user space vari-
ables of each TCP flow. The interface between kernel-space and user-space is the
virtual proc filesystem where statistics about flow are kept. Each flow is associ-
ated to a file in /proc/web100/CID where CID is a number incremented on the
estabilishment of a new TCP flow. In order to log a TCP flow, it is necessary
to know the CID and then it is possible to use one of the web100 tools (i.e.
readvars) in a loop. This is a really difficult task because the CID is not known
and the user has to manually find the CID matching the right connection.

WAD (Work Around Daemon) [8] is a daemon which depends on libweb100.
Is is written in python language and logs variables matching a defined pattern.
However WAD is a standalone application and it can’t be integrated in existing
applications (say iperf) in order to have a self contained tool which automati-
cally produces log files.

Here we propose a library we developed which is able to overcome the afore-
mentioned issues. The library depends on 1ibweb100, it is written in C language
using glib and it is shipped with a very simple API (Application Program In-
terface) in order to be easily integrated in existing applications.

4 N

Tcpstats Framework

Applications using TCP

libnetmes

libweb100

Linux Kernel

Figure 1. TCP Stats framework

In order to use the library it is sufficient to use the following C function:
gboolean init_tcpstats(const gchar *lport_token, gint sfreq);

This function initializes the tcpstats internal thread which automatically logs
all flows which match the lport_tokenstring creating afile tcp <CID> <timestamp>.txt
where CID is the connection ID and timestamp is the UNIX timestamp of the
first data logged. lport_token is the local port to listen, a range of ports or a
list of ports (for further details see the documentation). Moreover it is possible
to set the congestion control algorithm using the following function:

set_congestion_control (gint cong)

Integrating the library in an existing applitation is as easy as calling init_tcpstats()
and linking the application to 1ibnetmes (see library documentation for further
details).

We used libnetmes in our tests after integrating it in iperf. In this was we
provide a complete tool which automatically logs its generated TCP flows. We
believe that promoting the use of this library will allow researchers to produce
homogeneous logs. The architecture measurement Framework architechture is
depicted in Figure 1.

4 Testbed, scenarios and results

In order to generate TCP flows we used iperf which has been modified to
incorporate libnetmes and to produce logs automatically. As for the TFRC
flows we used experimental code [11] at sender and receiver side.

The sender is located at university of Uppsala (Sweden) and the receiver,
which is located in Bari, Italy, is accessing the public Internet using a commer-
cial UMTS card by TIM. Each protocols have been tested (see figure 2) in three
different scenarios: i) single connection without reverse traffic; ii) single connec-
tion with reverse traffic; iii) one TFRC flow sharing the link with one TCP flow.
We have measured goodputs and burstiness.

The burstiness index [13] has been measured using the following index of
burstiness:

b— o(r) (1)

where o(r) represents the standard deviation of the received rate and E [r] is
the average value.

In the following subsections we report all results obtained carrying out the
tests.

4.1 Single connection without reverse traffic

In this section we describe results obtained when a single TCP or TFRC connec-
tion uses the UMTS downlink. Figure 3 depicts received goodput measurement

Tl Forward Traffic

TCP UPPSALA Internet Wired)>

JIPSEio Reverse Traffic)

Figure 2. Experimental testbed

of each test. It is worth noticing that, nor TCP neither TFRC, reach the nominal
downlink capacity of 384 Kbps. This is an expected behaviour for TCP flows over
wireless link as long as its congestion control can’t distinguish between losses due
to congestion episodes or due to wireless channel interference. Similar results are
obtained using TFRC congestion control algorithm.

Figure 4 depicts the TCP and TFRC received throughput during two consec-
utive tests. Both protocols show remarkable oscillations in throughput. Moreover
it is worth noticing that the TFRC transient is long (approximately 20s) if com-
pared to the TCP transient time. It seems that using TFRC for video streaming
in UMTS scenarios would require a longer buffering phase if compared to TCP
behaviour.

We have obtained similar results by repeating the experiments many times
over different days.

x10° TCP vs TFRC single connection wio RT
B B B e B s s s s s s B s B o

3k —v- TFR] |
—o—TcP
Y

15+

goodput (bytels)

Figure 3. TCP vs TFRC goodputs without reverse traffic

70000 4 70000

60000 4 60000

1s)

50000 4 5 50000

(byte!s

40000 4 £ 40000

throughput (byte!
throughy

30000 30000

20000

20000

10000 10000

Figure 4. TCP (a) or TFRC (b) istantaneous throughput without reverse traffic

4.2 Single connection with reverse traffic

In this scenario the TCP and TFRC have been tested in presence of homogeneous
reverse traffic in order to evaluate if the protocols are sensitive to congestion on
the backward path. For what concerns TCP, we run iperf in bidirectional mode
on both the UMTS client in Bari and at Uppsala, whereas to test TFRC in this
scenario we run sender and receiver on UMTS client and Uppsala, respectively.

By comparing Figure 5, which has been obtained measuring goodputs in the
present, scenario, and Figure 3, we can notice that goodputs suffer a dramatic
drop when using TCP or TFRC in presence of reverse traffic. This results are
quite disappointing if an UMTS connection has to be used in a peer to peer sys-
tem such as in the case of VoIP applications where a bidirectional communication
is set up.

In Figure 6 istantaneous rates of a TCP and TFRC flows are reported. Results
obtained here are consistent to what have been shown about TCP behaviour in
presence of the ack compression phenomena. Moreover TFRC exhibits a very
long transient period and a very low link utilization in the presence of TFRC
reverse traffic.

4.3 One TFRC flow and one TCP flow sharing the downlink

Here we collect results obtained when one TCP and one TFRC flow are present
on the UMTS downlink. Examinating Figure 7 (a) we can notice that the
throughput of each connection is not affected from the other flow and the down-
link capacity is not underutilized. In order to produce a quantitative measure-
ment of the inter-protocol fairness we evaluated the Jain Fairness Index [12],

TCP vs TFRC w/ reverse traffic

2500

goodput (bytels)

2000

1500

1000 - . . 4

Figure 5. TCP vs TFRC goodputs with reverse traffic

35000 1 ssooof 1

20000 1 s0000] 1
25000 1 - 2so00f 1
B H
< 2000 1 < 20000]- 1
s 15000 B A 15000 B

10000 1 10000] 1

” A | i ka\/\\w

. LJ .
0 20 w0 o e 10 120 h 6 w0 @ @ 0 3
time (s) time (s)

(a) (b)

Figure 6. TCP (a) vs TFRC (b) istantaneous throughput in the presence of reverse
traffic

x10° Parallel TCP and TFRC connections
25—

Jain Fairness Index

Figure 7. TCP and TFRC accessing the same link (a). Jain fairness index (b)

40000 4 40000

35000 4 35000

30000 4 30000

ls)

25000 25000

ighput (byt

20000 4 £ 20000
g

throughput (bytels)

th

15000 4 15000(

10000 10000

A B o

0 20 a0 60 80 100 120 o 20 40 60 EY 100 120

Figure 8. TCP (a) and TFRC (b) istantaneous throughput when simultaneously ac-
cessing the link

defined as follows:

2
Jrr = 7(2?:1 bi)

n
n Zi:l b?
where n is the number of flows on the link and b; is the goodput achieved by 3"
connection. Figure 7 (b) shows fairness indices which are near to the maximuma
value of 1 in most of the tests.

Figure 8 shows istantaneous throughput of a TCP flow and a TFRC flow
which simultaneously access the UMTS link. It is worth noticing that even if the
channel utilization is quite good each flow exhibits pronounced oscillations.

4.4 Burstiness evaluation and mean goodputs

Here we summarize values of the burstiness indices evaluated using (1) for se-
lected flows in each scenarios. As we can see looking at Figure 9, burstiness index
values are similar for each protocol in each of the three scenarios we have tested.
In other terms TFRC doesn’t produce smoother flows compared to TCP flows
in each of the tested scenarios. Moreover both protocols behave better when
accessing the UMTS downlink without reverse traffic. The worst condition is
experienced when the backward path is congested.

Figure 10 shows average goodputs achieved by TFRC and TCP in considered
scenarios.

goodput (byte/s)

16

12

burstiness index
o
©
T

0.6

0.4r

0.2

single conn. w/o RT single conn w/ RT parallel conn

Figure 9. Burstiness indices

16000

14000 -
12000 —
10000 -
8000
6000 -

4000 -

7 I
0 I I

Il
single conn w/o RT single conn w/ RT parallell connections

Figure 10. Average goodput in three different scenarios

5 Conclusions

We have tested TCP and TFRC congestion control algorithm when accessing
the public Internet using a commercial UMTS card. The purpose was to evaluate
their performances in 3G systems when streaming multimedia flows.

Results have shown that goodput provided by TFRC or TCP are similar,
whereas burstiness is different in only one test scenario. Main problems we have
found is that both TFRC and TCP are not able to provide UMTS link utilization
when in the presence of reverse traffic that can be a severe limitation in P2P
VoIP applications.

Finally, TFRC burstiness has been proved to be comparable to TCP bursti-
ness in each scenario so both protocols requires quite the same receiver buffer
size to cope with oscillation in received rate.

6 Acknowledgments

We tank Prof. Marco Ajmone Marsan who generously supported the start of this
investigation.

References

1. M. Handley,S. Floyd, J. Padhye and J. Widmer, "TCP Friendly Rate Control
(TFRC): Protocol Specification”, RFC 3448, January 2003.

2. V. Jacobson, “Congestion Avoidance and Control”, ACM Computer Communica-
tions Review, 18(4): 314 - 329, August 1988.

3. J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. “Modeling TCP throughput:
A simple model and its empirical validation”, ACM Sigcomm ’98, pages 303-314,
Vancouver BC, Canada, 1998.

4. S. Floyd, M. Handley, J. Padhye, and J. Widmer. "Equation-based congestion
control for unicast application”, ACM SIGCOMM 2000, pages 43-56, Stockholm,
Sweden, August 2000

5. M. Mathis, J Heffner and R Reddy, "Web100: Extended TCP Instrumentation for
Research, Education and Diagnosis", ACM Computer Communications Review,
Vol 33, Num 3, July 2003.

6. T. Dunigan, F. Fowler, “A TCP-Over-UDP test Harness”, Technical report

S. Ostermann. TCPtrace, 2003. http://www.tcptrace.org/

8. Dunigan, T., M. Mathis and B. Tierney, “A TCP Tuning Daemon , Proceeding of
IEEE Supercomputing 2002 Conference”, Nov. 2002, LBNL-51022.
9. iperf: http://dast.nlanr.net/Projects/Ipert/

10. L. De Cicco, libnetmeas, http://193.204.59.123/c3lab/libnetmeas.php

11. J. Widmer, "TFRC experimental Code”, http://www.icir.org/tfrc/code/

12. R. Jain, “The art of Computer Systems Performance Analysis Techniques for Ex-
perimental Design, Measurement, Simulation and Modeling”, John Wiley and Sons,
April 1991.

13. Yang YR, Kim MS, Lam S (2001) “Transient behaviors of TCP- friendly congestion
control protocols.” In: Proceedings of IEEE INFOCOM 2001, Anchorage, AK, April
2001, pp 22-26

~

